Exemple #1
0
 def start_monitoring_local(self):
     # monitoring lokal in thread starten
     if self.monitor is None:
         self.monitor = Monitoring()
         self.monitor.start()
         return True
     else:
         return False
Exemple #2
0
 def startMon(self):
     print('Starting Mon')
     self.monitor = Monitoring(self.mon_controller, '6666', self.exp_path,
                               self.iot, self.edge, self.tcpdump_if,
                               self.tcpdump_port, self.receiver)
     self.monitor.init()
     self.monitor.set_consumer_pid(self.consumer_PID)
     self.monitor.start_components()
     self.monitor.start_monitoring()
Exemple #3
0
def start(args):
    if args.setupmode == "QUICK_SETUP_MODE":
        Monitoring.start_monitoring(f"monitoring/node-monitoring.yml")
    elif args.setupmode == "PRODUCTION_MODE":
        print(" PRODUCTION_MODE not supported yet ")
        sys.exit()
    else:
        print(
            "Invalid setup mode . It should be either QUICK_SETUP_MODE or PRODUCTION_MODE"
        )
Exemple #4
0
    def __init__(self, height, width, num_actions, state_frames, gamma, batch_size=32):
        self.gamma = gamma
        self.num_actions = num_actions
        self.input_var = T.tensor4('inputs')
        self.target_var = T.vector('targets')
        self.actions_var = T.matrix()

        self.input_shared = theano.shared(np.zeros([batch_size, state_frames, height, width]),
                                          dtype=theano.tensor.floatX)
        self.taret_shared = theano.shared(np.zeros([batch_size, 1]), dtype=theano.tensor.floatX)
        self.actions_shared = theano.shared(np.zeros([batch_size, num_actions]).astype('int32'),
                                            dtype=theano.tensor.int32)

        self.net = get_inference(self.input_var, num_actions, height, width, state_frames)
        self.prediction = (lasagne.layers.get_output(self.net) * self.actions_var).sum(axis=1)
        self.error = T.sqr(self.target_var - self.prediction).mean()

        params = lasagne.layers.get_all_params(self.net, trainable=True)
        #self.opt = lasagne.updates.rmsprop(
        #    self.error, params, learning_rate=0.0025, epsilon=0.01)
        #self.opt = lasagne.updates.adagrad(
        #    self.error, params, learning_rate=0.001
        #)
        self.opt = gen_updates_rmsprop(params, T.grad(self.error, params))

        self.train_step = theano.function([self.input_var, self.target_var, self.actions_var],
                                          self.error, updates=self.opt, allow_input_downcast=True)
        self.net_fun = theano.function([self.input_var], lasagne.layers.get_output(self.net),
                                       allow_input_downcast=True)

        self.monitor = Monitoring()

        self.pred_fun = theano.function([self.input_var, self.actions_var], self.prediction, allow_input_downcast=True)
        self.error_fun = theano.function([self.input_var, self.target_var, self.actions_var], self.error,
                                         allow_input_downcast=True)
Exemple #5
0
    def __init__(self, height, width, session, num_actions, state_frames, gamma, net_type=1,
                 optimizer=tf.train.AdamOptimizer(1e-6)):
        self.height = height
        self.width = width
        self.session = session
        self.num_actions = num_actions
        self.state_frames = state_frames
        self.gamma = gamma
        self.opt = optimizer
        self.train_counter = 0

        self.input_pl = tf.placeholder(tf.float32, [None, height, width, state_frames])
        self.target_pl = tf.placeholder(tf.float32, [None])
        self.actions_pl = tf.placeholder(tf.float32, [None, num_actions])

        if net_type == 1:
            self.network = get_inference(self.input_pl, num_actions, 'main_net')
        else:
            self.network = get_inference2(self.input_pl, num_actions, 'main_net')

        self.prediction = tf.reduce_sum(tf.mul(self.network.output, self.actions_pl), 1)
        #self.error = tf.reduce_mean(tf.square(self.target_pl - self.prediction))
        self.error = tf.square(self.target_pl - self.prediction)

        self.train_step = self.opt.minimize(self.error)

        self.session.run([tf.initialize_all_variables()])

        #todo: throw that away
        self.monitor = Monitoring()
Exemple #6
0
        async def on_start(self):
            self.terminate = False
            self.SUCCESS = False
            self.verbose = False

            # Initialization
            self.beliefs = WorldModel()  # B := B0; Initial Beliefs
            self.goals = self.beliefs.current_world_model.goals
            self.intentions = self.beliefs.current_world_model.goals  # I := I0; Initial Intentions
            self.htn_planner = HierarchicalTaskNetworkPlanner(self.beliefs)
            self.perception = Perception(self.beliefs)
            self.coordination = Coordination(self.beliefs)
            self.monitoring = Monitoring()

            self.what, self.why, self.how_well, self.what_else, self.why_failed = "", "", "", "", ""
            self.plans = []
            self.selected_plan = []
            self.percept = {}
            self.action = ""
            self.start_time = datetime.datetime.now()
Exemple #7
0
 def run(self, gen: Generator):
     #print("*********************   %s   ********************\n" % (gen,))
     for ct in self.controllers:
         ct.setSLA(self.sla)
         m = Monitoring(self.window)
         ct.setMonitoring(m)
         a = Application(self.sla)
         s = Simulation(self.horizon, a, gen, m, ct)
         # print(ct)
         s.run()
         self.simulations.append(s)
         ct.reset()
Exemple #8
0
        async def on_start(self):

            self.terminate = False
            self.SUCCESS = False
            self.verbose = False
            # Initialization
            self.htn_planner = HierarchicalTaskNetworkPlanner()
            self.goal = [('transfer_target_object_to_container', 'arm',
                          'target_object', 'table', 'container')]
            self.intentions = self.goal  # I := I0; Initial Intentions
            self.beliefs = WorldModel()  # B := B0; Initial Beliefs
            self.monitoring = Monitoring()
            self.perception = Perception()
            self.coordination = Coordination()

            # Disable all 3 coordination switches for testing
            self.coordination.control.send_requests = True
            self.coordination.control.center_init = False
            self.coordination.control.detect_last_position = True

            self.what, self.why, self.how_well, self.what_else, self.why_failed = "", "", "", "", ""
            self.plans = []
            self.start_time = datetime.datetime.now()
Exemple #9
0
def main():
    # global data
    database = Data()
    database.debug_flag = False
    """
    test from keyboard input
    """
    #database.debug_flag = True

    # sensor data
    data_source = Source(database)
    lidar_source_thread = threading.Thread(
        target=data_source.lidar_stream_main)
    left_cam_source_thread = threading.Thread(
        target=data_source.left_cam_stream_main)
    right_cam_source_thread = threading.Thread(
        target=data_source.right_cam_stream_main)
    mid_cam_source_thread = threading.Thread(
        target=data_source.mid_cam_stream_main)

    lidar_source_thread.start()
    left_cam_source_thread.start()
    right_cam_source_thread.start()
    mid_cam_source_thread.start()

    # Subroutines
    monitoring = Monitoring(data_source, database)
    platform = CarPlatform('COM5', database)  # PLEASE CHECK YOUR COMPORT
    sign_cam = SignCam(data_source, database)
    planner = MotionPlanner(data_source, database)
    control = Control(database)

    monitoring_thread = threading.Thread(target=monitoring.main)
    platform_thread = threading.Thread(target=platform.main)
    sign_cam_thread = threading.Thread(target=sign_cam.main)
    planner_thread = threading.Thread(target=planner.main)
    control_thread = threading.Thread(target=control.main)

    monitoring_thread.start()
    platform_thread.start()
    sign_cam_thread.start()
    planner_thread.start()
    control_thread.start()

    while True:
        time.sleep(0.1)
        if database.is_all_system_stop():
            break
    time.sleep(2)
    return 0
Exemple #10
0
 def run(self, gen: Generator):
     #print("*********************   %s   ********************\n" % (gen,))
     for ct in self.controllers:
         ct.setSLA(self.sla)
         if self.genMonitoring:
             m = self.genMonitoring(self.window, self.sla)
         else:
             m = Monitoring(self.window, self.sla)
         ct.setMonitoring(m)
         ct.setGenerator(gen)
         a = self.app
         s = Simulation(self.horizon, a, gen, m, ct)
         # print(ct)
         s.run()
         self.simulations.append(s)
         ct.reset()
         a.reset()
Exemple #11
0
    def __readConfig(self):
        self._configfile = 'client.ini'
        self._config = ConfigParser.RawConfigParser()
        self._config.read(self._configfile)
        self._monitoring = Monitoring()

        self._user.name = self._config.get("server", 'username')

        try:
            try: self.__TCP_IP = self._config.get("server", 'tcp_ip')
            except ConfigParser.NoOptionError: self.__TCP_IP = TCP_IP
            try: self.__TCP_PORT = self._config.getint("server", 'tcp_port')
            except ConfigParser.NoOptionError: self.__TCP_PORT = TCP_PORT
            try: self.__BUFFER_SIZE = self._config.getint("server", 'buffer_size')
            except ConfigParser.NoOptionError: self.__BUFFER_SIZE = BUFFER_SIZE

        except ConfigParser.NoSectionError:
            self.__TCP_IP = TCP_IP
            self.__TCP_PORT = TCP_PORT
            self.__BUFFER_SIZE = BUFFER_SIZE
Exemple #12
0
from flask import Flask, request
from flask_restful import Resource, Api
from monitoring import Monitoring

app = Flask(__name__)
api = Api(app)

host = 'debuggerbasedmonitoring.appspot.com'
basePath = '/api/v1'

monitoring = Monitoring()


class Breakpoint(Resource):
    def get(self, user_id, project_id):
        ret, content = monitoring.getBreakpoints(user_id, project_id)
        if not ret:
            return None, 400
        return content, 200

    def post(self, user_id, project_id):
        if request.is_json:
            body = request.get_json()
        else:
            return None, 409
        if 'content' not in body:
            return None, 409

        content = body['content']
        try:
            file, line = content.split(':')
Exemple #13
0
def foodSense():
    print('Starting Food Sense')

    # Begin initializing necessary components)
    fb = Firebase()
    detect = Detect(fb)
    monitor = Monitoring(fb)
    scale = Scale()

    # Set scale calibration
    scale.setReferenceUnit(-25.725)
    scale.reset()
    scale.tare()

    ### START DEBUG ###
    ### END DEBUG ###

    ### MAIN LOOP ###
    while True:
        while monitor.powerOn:
            print('Power is on')
            time.sleep(1)
            
            while monitor.doorClosed():
                print('Door is closed')
                monitor.checkTemp()
                time.sleep(1)

                if monitor.doorOpen():
                    print('Door was opened')
                    monitor.startDoorTimer()
                    
                    while monitor.doorOpen():
                        print('Waiting for door to close')
                        monitor.checkDoorTimer()
                        monitor.checkTemp()
                        time.sleep(1)
                    else:
                        print('Door was closed')

                        scale.getWeight()
                        detect.getImage()
                        detect.detectItem()
                        detect.parseResponse(scale.weight)
                else:
                    pass
            else:
                print('Door must be closed on program startup')
        else:
            monitor.powerSave()
    else:
        pass
Exemple #14
0
class DeepQNetwork(object):
    def __init__(self, height, width, session, num_actions, state_frames, gamma, net_type=1,
                 optimizer=tf.train.AdamOptimizer(1e-6)):
        self.height = height
        self.width = width
        self.session = session
        self.num_actions = num_actions
        self.state_frames = state_frames
        self.gamma = gamma
        self.opt = optimizer
        self.train_counter = 0

        self.input_pl = tf.placeholder(tf.float32, [None, height, width, state_frames])
        self.target_pl = tf.placeholder(tf.float32, [None])
        self.actions_pl = tf.placeholder(tf.float32, [None, num_actions])

        if net_type == 1:
            self.network = get_inference(self.input_pl, num_actions, 'main_net')
        else:
            self.network = get_inference2(self.input_pl, num_actions, 'main_net')

        self.prediction = tf.reduce_sum(tf.mul(self.network.output, self.actions_pl), 1)
        #self.error = tf.reduce_mean(tf.square(self.target_pl - self.prediction))
        self.error = tf.square(self.target_pl - self.prediction)

        self.train_step = self.opt.minimize(self.error)

        self.session.run([tf.initialize_all_variables()])

        #todo: throw that away
        self.monitor = Monitoring()

    def get_best_action(self, example):
        vals = self.evaluate_network([example.transpose([1, 2, 0])])[0]
        return np.argmax(vals), vals

    def train(self, batch):
        self.train_counter += 1
        prepare_batch(batch)
        batch_size = batch['batch_size']
        self.monitor.report_action_start('get_batch')
        target = self.get_target(batch)
        self.monitor.report_action_finish('get_batch')
        actions = np.zeros([batch_size, self.num_actions])
        actions[:, list(batch['actions'])] = 1
        self.monitor.report_action_start('pred')
        _, error_val, pred = self.session.run(
            [self.train_step, self.error, self.prediction],
            feed_dict={self.target_pl: target, self.actions_pl: actions, self.input_pl: batch['states_1']})
        self.monitor.report_action_finish('pred')
        return error_val.mean()

    def get_target(self, batch):
        prepare_batch(batch)
        batch_size = batch['batch_size']
        q_vals = self.evaluate_network(batch['states_2'])
        best_actions = np.argmax(q_vals, 1)
        target = np.choose(best_actions, q_vals.T)
        for i in xrange(batch_size):
            if batch['terminations'][i]:
                mul = 0
            else:
                mul = self.gamma
            target[i] = batch['rewards'][i] + mul * target[i]
        return target

    def evaluate_network(self, states_batch):
        return self.session.run(self.network.output, feed_dict={self.input_pl: states_batch})
Exemple #15
0
    from control import Control
    from car_platform import CarPlatform
    from monitoring import Monitoring

    testDT = Data()
    """
    test code
    특정 미션 번호에서 시작하도록 함
    """
    testDT.current_mode = 1

    testDS = Source(testDT)
    car = CarPlatform('COM5', testDT)
    testMP = MotionPlanner(testDS, testDT)
    test_control = Control(testDT)
    monitor = Monitoring(testDS, testDT)

    lidar_source_thread = threading.Thread(target=testDS.lidar_stream_main)
    left_cam_source_thread = threading.Thread(
        target=testDS.left_cam_stream_main)
    right_cam_source_thread = threading.Thread(
        target=testDS.right_cam_stream_main)
    mid_cam_source_thread = threading.Thread(target=testDS.mid_cam_stream_main)
    planner_thread = threading.Thread(target=testMP.main)
    control_thread = threading.Thread(target=test_control.main)
    car_thread = threading.Thread(target=car.main)
    monitoring_thread = threading.Thread(target=monitor.main)

    lidar_source_thread.start()
    planner_thread.start()
    time.sleep(3)
Exemple #16
0
import sys

# The logger
logging.basicConfig(format="[%(levelname)s] %(asctime)-15s - %(message)s", level=config.LOG_LEVEL)
logger = logging.getLogger('radiovisserver')
# Logging to file is handled outside by supvervisord instead of the application itself
# fh = FileHandler(filename='radiovis-server.log', mode='a')
# fh.setFormatter(Formatter(fmt="[%(levelname)s] %(asctime)-15s - %(message)s"))
# logger.addHandler(fh)


# Last message by TOPIC
LAST_MESSAGES = {}


monitoring = Monitoring()
monitoring.count("radiovis.global.servers")

# Create the class to manage the rabbit connexion
rabbitcox = RabbitConnexion(LAST_MESSAGES, monitoring)


# Handeler for new stomp clients
def stomp_client(socket, address):
    logger.info('%s:%s: New stomp connection from' % address)

    # Create a new stomp server
    s = StompServer(socket, LAST_MESSAGES, rabbitcox, monitoring)
    monitoring.count("radiovis.global.connections", {"session_id": s.session_id, "ip": s.info_ip + ':' + str(s.info_port) })

    # Let rabbitmq send messages to the stomp server
Exemple #17
0

async def request():
    async with aiohttp.ClientSession() as session:
        try:
            async with session.get('http://127.0.0.1:80') as response:
                return await response.text()
        except Exception:
            return False


def request_by_count(count: int):
    return asyncio.run(asyncio.gather(*[
        request() for _ in range(count)
    ]))


if __name__ == '__main__':
    pidfile = sys.argv[1]
    request_count = int(sys.argv[2])
    monitoring = Monitoring(pidfile)

    with ThreadPoolExecutor() as executor:
        future = executor.submit(monitoring.measure_resource, .1)
        start_time = timer()
        result = request_by_count(request_count)
        print(f"Latency: {timer() - start_time}")
        print(f"Errors: {result.count(False)}")
        monitoring.stop()
        print(f"Report: {future.result()}")
Exemple #18
0
def start_monitoring():
    monitoring = Monitoring()
    monitoring.call()
Exemple #19
0
import bottle
import json
import time

from bottle import route, run, request, default_app, template, HTTPError
from docopt import docopt
from engine import ReconcileEngine
from suggest import SuggestEngine
from monitoring import Monitoring

from config import *

reconcile = ReconcileEngine(redis_client)
suggest = SuggestEngine(redis_client)
monitoring = Monitoring(redis_client)


def jsonp(view):
    def wrapped(*posargs, **kwargs):
        args = {}
        # if we access the args via get(),
        # we can get encoding errors…
        for k in request.forms:
            args[k] = getattr(request.forms, k)
        for k in request.query:
            args[k] = getattr(request.query, k)
        callback = args.get('callback')
        try:
            result = view(args, *posargs, **kwargs)
        except (ValueError, AttributeError, KeyError) as e:
            result = {
Exemple #20
0
    def run(self):
        # Set up LED pin
        LED = 27
        GPIO.setwarnings(False)
        GPIO.setmode(GPIO.BCM)
        GPIO.setup(LED, GPIO.OUT)

        # Initialize objects
        f = Firebase(self.q)
        d = Detect(f, self.q)
        m = Monitoring(f, self.q)
        s = Scale(self.q)

        # Set scale calibration
        s.setReferenceUnit(-25.725)
        s.reset()
        s.tare()

        self.q.put('Ready')

        # Loop until stop event is set
        while not self.event.is_set():

            # Loop while RPi is on AC power
            while m.powerOn:

                # Check if stop has been set
                if self.event.is_set():
                    break

                # Loop while fridge door is closed
                while m.doorClosed():
                    if not m.powerOn():
                        break
                    m.checkTemp()

                    # Check if stop hsa been set
                    if self.event.is_set():
                        break
                else:
                    print('Door was opened')
                    self.q.put('Door opened')
                    GPIO.output(LED, True)
                    m.startDoorTimer()

                    while m.doorOpen():
                        print('Waiting for door to close')

                        m.checkDoorTimer()
                        m.checkTemp()
                    else:
                        print('Door closed')
                        self.q.put('Door closed')

                        s.getWeight()
                        d.getImage()
                        d.detectItem()
                        d.parseResponse(s.weight)
                        s.tare()
                        GPIO.output(LED, False)

                        print('Done')
                        self.q.put('Done')
            else:
                m.powerSave()

        f.close(
        )  # Firebase app must be closed before we can create another instance
Exemple #21
0
    return current_intentions


if __name__ == '__main__':

    terminate = False
    SUCCESS = False
    verbose = False

    # Initialization
    htn_planner = HierarchicalTaskNetworkPlanner()
    goal = [('transfer_target_object_to_container', 'arm', 'target_object',
             'table', 'container')]
    intentions = goal  # I := I0; Initial Intentions
    beliefs = WorldModel()  # B := B0; Initial Beliefs
    monitoring = Monitoring()
    perception = Perception()
    coordination = Coordination()
    # Disable all 3 coordination switches for testing
    coordination.control.send_requests = True
    coordination.control.center_init = False
    coordination.control.detect_last_position = True

    what, why, how_well, what_else, why_failed = "", "", "", "", ""
    start_time = datetime.datetime.now()
    """
        Agent control loop version 7 (Intention Reconsideration)
        I := I0; Initial Intentions
        B := B0; Initial Beliefs
        while true do
          get next percept ρ; #  OBSERVE the world
Exemple #22
0
def handler():

    device_name = argv[1]
    CURRENT_TIME = str(int(time.time() * 1000))

    monitoring = Monitoring()
    process = monitoring.get_running_process()

    dimensions = [{
        'Name': 'script',
        'Value': process['name']
    }, {
        'Name': 'device_id',
        'Value': device_name
    }, {
        'Name': 'user',
        'Value': process['username']
    }, {
        'Name': 'process_id',
        'Value': str(process['pid'])
    }]

    common_attributes = {'Dimensions': dimensions, 'Time': CURRENT_TIME}

    record = {
        'cpu_usage': monitoring.get_cpu_usage_pct(),
        'cpu_freq': monitoring.get_cpu_frequency(),
        'cpu_temp': monitoring.get_cpu_temp(),
        'ram_usage': int(monitoring.get_ram_usage() / 1024 / 1024),
        'ram_total': int(monitoring.get_ram_total() / 1024 / 1024),
    }

    print("\n")
    # print(dimensions)
    # print(record)
    print("\n")

    # Output current CPU load as a percentage.
    print('System CPU load is {} %'.format(monitoring.get_cpu_usage_pct()))

    # Output current CPU frequency in MHz.
    print('CPU frequency is {} MHz'.format(monitoring.get_cpu_frequency()))

    # Output current CPU temperature in degrees Celsius
    print('CPU temperature is {} degC'.format(monitoring.get_cpu_temp()))

    # Output current RAM usage in MB
    print('RAM usage is {} MB'.format(
        int(monitoring.get_ram_usage() / 1024 / 1024)))

    # Output total RAM in MB
    print('RAM total is {} MB'.format(
        int(monitoring.get_ram_total() / 1024 / 1024)))

    # Output current RAM usage as a percentage.
    print('RAM usage is {} %'.format(monitoring.get_ram_usage_pct()))

    session = boto3.Session()
    write_client = session.client('timestream-write', region_name='eu-west-1')

    response = write_client.write_records(
        DatabaseName=DB_NAME,
        TableName=TABLE_NAME,
        Records=monitoring.get_write_records(),
        CommonAttributes=common_attributes)
    print(response)

    query_client = session.client('timestream-query', region_name='eu-west-1')
    query = Query(query_client)
    print("\n")
    query.run_query_with_multiple_pages(20)
Exemple #23
0
def setup(args):
    if args.setupmode == "QUICK_SETUP_MODE":
        monitor_url_dir = f'https://raw.githubusercontent.com/radixdlt/node-runner/{cli_version()}/monitoring'
        print(f"Downloading artifacts from {monitor_url_dir}\n")
        Monitoring.setup_prometheus_yml(
            f"{monitor_url_dir}/prometheus/prometheus.yml")
        Monitoring.setup_datasource(
            f"{monitor_url_dir}/grafana/provisioning/datasources/datasource.yml"
        )
        Monitoring.setup_dashboard(
            f"{monitor_url_dir}/grafana/provisioning/dashboards/",
            ["dashboard.yml", "sample-node-dashboard.json"])
        Monitoring.setup_monitoring_containers(
            f"{monitor_url_dir}/node-monitoring.yml")
        Monitoring.setup_external_volumes()
        monitoring_file_location = "monitoring/node-monitoring.yml"
        Monitoring.start_monitoring(f"{monitoring_file_location}")

    elif args.setupmode == "PRODUCTION_MODE":
        print(" PRODUCTION_MODE not supported yet ")
        sys.exit()
    else:
        print(
            "Invalid setup mode . It should be either QUICK_SETUP_MODE or PRODUCTION_MODE"
        )
Exemple #24
0
def main():
    while True:
        print('Init Monitoring')
        mevents = Monitoring()
        mevents.monitoring_events()
Exemple #25
0
    class BDIBehaviour(PeriodicBehaviour):
        async def on_start(self):
            self.terminate = False
            self.SUCCESS = False
            self.verbose = False

            # Initialization
            self.beliefs = WorldModel()  # B := B0; Initial Beliefs
            self.goals = self.beliefs.current_world_model.goals
            self.intentions = self.beliefs.current_world_model.goals  # I := I0; Initial Intentions
            self.htn_planner = HierarchicalTaskNetworkPlanner(self.beliefs)
            self.perception = Perception(self.beliefs)
            self.coordination = Coordination(self.beliefs)
            self.monitoring = Monitoring()

            self.what, self.why, self.how_well, self.what_else, self.why_failed = "", "", "", "", ""
            self.plans = []
            self.selected_plan = []
            self.percept = {}
            self.action = ""
            self.start_time = datetime.datetime.now()

        async def run(self):
            """
                Agent control loop version 7 (Intention Reconsideration)
                I := I0; Initial Intentions
                B := B0; Initial Beliefs
                while true do
                  get next percept ρ; #  OBSERVE the world
                  B:= brf(B, ρ); #  Belief revision function
                  D: = option(B, I);
                  I := filter(B, D, I);
                  π := plan(B, I); #  MEANS_END REASONING
                  while not (empty(π) or succeeded(Ι, Β) or impossible(I, B)) do  # Drop impossible or succeeded intentions
                      α := hd(π); #  Pop first action
                      execute(α);
                      π := tail(π);
                      get next percept ρ;
                      B:= brf(B, ρ);
                      if reconsider(I, B) then  # Meta-level control: explicit decision, to avoid reconsideration cost
                          D := options(B, I);
                          I := filter(B, D, I);
                      end-if
                      if not sound(π, I, B) then  # Re-activity, re-plan
                          π := plan(B, I);
                      end-if
                  end-while
                end-while
            """

            if self.verbose:
                print(f"--- arm_agent: "
                      f"PeriodicSenderBehaviour running "
                      f"at {datetime.datetime.now().time()}: "
                      f"{self.beliefs.current_world_model.ticks}")

            # while true do
            if not self.SUCCESS and not self.terminate and self.beliefs.update_tick(
            ) < self.beliefs.current_world_model.max_ticks:

                if len(self.selected_plan) == 0:
                    # msg = Message(to="madks2@temp3rr0r-pc")  # Instantiate the message  # TODO: place holder for IM
                    # msg.body = "Hello World: " + str(self.counter)  # Set the message content
                    # await self.send(msg)

                    # TODO: engrave figures: arm IK, gripper
                    self.percept = self.perception.get_percept(
                        text_engraving=(self.why_failed, self.how_well)
                    )  # get next percept ρ; OBSERVE the world
                    self.beliefs = self.perception.belief_revision(
                        self.beliefs, self.percept)  # B:= brf(B, ρ);
                    self.beliefs = self.monitoring.fire_events(
                        self.beliefs, self.percept)
                    self.intentions = self.deliberate(
                        self.beliefs, self.intentions
                    )  # DELIBERATE about what INTENTION to achieve next
                    self.SUCCESS = True if self.intentions == "" else False
                    self.plans = self.htn_planner.get_plans(
                        self.beliefs.current_world_model, self.intentions
                    )  # π := plan(B, I); MEANS_END REASONING

                    if self.plans != False:
                        if len(self.plans) > 0:
                            self.plans.sort(
                                key=len
                            )  # TODO: check why sorting doesn't work on "deeper" levels
                            if self.verbose:
                                print("{}: Plan: {}".format(
                                    self.beliefs.current_world_model.tick,
                                    self.plans[0]))
                            self.selected_plan = deque(
                                self.plans[0]
                            )  # TODO: Use a "cost function" to evaluate the best plan, not shortest
                            self.why_failed = ""
                    else:
                        self.why_failed = self.htn_planner.failure_reason
                        if self.verbose:
                            print("Plan failure_reason: {}".format(
                                self.why_failed),
                                  end=" ")
                        self.how_well = (
                            self.beliefs.current_world_model.tick,
                            self.beliefs.current_world_model.max_ticks,
                            int((datetime.datetime.now() -
                                 self.start_time).total_seconds() *
                                1000),  # milliseconds
                            self.plans)
                        if self.verbose:
                            print("how_well: {}".format(self.how_well))

                else:  # while not (empty(π) or succeeded(Ι, Β) or impossible(I, B)) do
                    self.action, self.selected_plan = self.selected_plan.popleft(
                    ), self.selected_plan  # α := hd(π); π := tail(π);

                    if self.verbose:
                        print("{}: Action: {}".format(
                            self.beliefs.current_world_model.tick,
                            self.action))

                    self.coordination.execute_action(
                        self.action,
                        self.beliefs.current_world_model)  # execute(α);

                    self.what, self.why = self.action, self.intentions
                    self.how_well = (
                        self.beliefs.current_world_model.tick,
                        self.beliefs.current_world_model.max_ticks,
                        int((datetime.datetime.now() -
                             self.start_time).total_seconds() *
                            1000),  # milliseconds
                        self.selected_plan)
                    self.what_else = self.plans[1] if len(
                        self.plans) > 1 else self.plans[0]
                    if self.verbose:
                        self.print_answers(self.what, self.why, self.how_well,
                                           self.what_else)

                    # get next percept ρ; OBSERVE the world

                    # TODO: Don't update target object location, when it is obscured
                    if self.action != ('move_arm_above',
                                       'target_object') and self.action != (
                                           'move_arm', 'target_object'):
                        self.percept = self.perception.get_percept(
                            text_engraving=(self.what, self.why, self.how_well,
                                            self.what_else))
                        self.beliefs = self.perception.belief_revision(
                            self.beliefs, self.percept)
                        self.beliefs = self.monitoring.fire_events(
                            self.beliefs, self.percept)

                    # TODO: trigger sound percept?
                    if self.action == ('initialize', 'arm'):
                        self.percept = {
                            "initialized": {
                                'arm': True
                            }
                        }  # TODO: post conditions or monitoring
                        self.beliefs = self.perception.belief_revision(
                            self.beliefs,
                            self.percept)  # TODO: post conditions
                        self.beliefs = self.monitoring.fire_events(
                            self.beliefs, self.percept)
                    elif self.action == ('move_arm', 'target_object'):
                        self.percept = {
                            "distance": {
                                'distance_to_gripper': 2.2
                            }
                        }  # TODO: update with monitoring
                        self.beliefs = self.perception.belief_revision(
                            self.beliefs, self.percept)
                        self.beliefs = self.monitoring.fire_events(
                            self.beliefs, self.percept)
                    elif self.action == ('move_arm_above', 'container'):
                        self.percept = {
                            "location": {
                                "target_object": "container"
                            },
                            "grabbed": {
                                'target_object': False
                            }
                        }
                        self.beliefs = self.perception.belief_revision(
                            self.beliefs, self.percept)
                        self.beliefs = self.monitoring.fire_events(
                            self.beliefs, self.percept)

                    # if reconsider(I, B) then
                    #   D := options(B, I);
                    #   I := filter(B, D, I);

                    # if not sound(π, I, B) then
                    #   π := plan(B, I)

                    # TODO: Backtracking of action?
            else:
                self.done()
                self.kill()

        async def on_end(self):
            print("-- on_end")
            print("Done.")
            self.perception.destroy()
            # stop agent from behaviour
            await self.agent.stop()

        # async def _step(self):  # TODO: Need?
        #     # the bdi stuff
        #     pass

        def done(self):
            print("-- Sender Agent: Done")

            show_history = True
            print("Final World model:")
            print("-- Ticks: {}".format(self.beliefs.current_world_model.tick))
            print("-- initialized: {}".format(
                self.beliefs.current_world_model.initialized))
            print("-- location: {}".format(
                self.beliefs.current_world_model.location))
            print("-- grabbed: {}".format(
                self.beliefs.current_world_model.grabbed))
            if show_history:
                print()
                print("World model History:")
                for tick in range(len(self.beliefs.world_model_history)):
                    print("Tick {}:".format(tick))
                    print("-- initialized: {}".format(
                        self.beliefs.world_model_history[tick].initialized))
                    print("-- location: {}".format(
                        self.beliefs.world_model_history[tick].location))
                    print("-- grabbed: {}".format(
                        self.beliefs.world_model_history[tick].grabbed))

            print()
            print("{}!".format("SUCCESS" if self.SUCCESS else "FAIL"))

        def print_answers(self, what_answer, why_answer, how_well_answer,
                          what_else_answer):
            print(
                "Q: What is the robot doing? A: {}\n"
                "Q: Why is it doing it? A: {}\n"
                "Q: How well is it doing it? A: {}\n"
                "Q: What else could it have been doing instead? A: {}".format(
                    what_answer, why_answer, how_well_answer,
                    what_else_answer))

        def deliberate(self, current_beliefs, current_intentions):
            """
            Decide WHAT sate of affairs you want to achieve.
            :param current_beliefs: WordModel instance, the world model, information about the world.
            :param current_intentions: List of tuples, tasks that the agent has COMMITTED to accomplish.
            :return: List of tuples, filtered intentions that the agent COMMITS to accomplish.
            """
            # 1. Option Generation: The agent generates a set of possible alternatives.
            current_desires = current_intentions  # TODO: D := option(B, I);

            # 2. Filtering: Agent chooses between competing alternatives and commits to achieving them.
            current_intentions = self.filter_intentions(
                current_beliefs, current_desires,
                current_intentions)  # I := filter(B, D, I);

            return current_intentions

        def filter_intentions(self, current_beliefs, current_desires,
                              current_intentions):
            """
            Choose between competing alternatives and COMMITTING to achieving them.
            :param current_beliefs: WordModel instance, the world model, information about the world.
            :param current_desires: List of tuples, tasks that the agent would like to accomplish.
            :param current_intentions: List of tuples, tasks that the agent has COMMITTED to accomplish.
            :return: List of tuples, filtered intentions that the agent COMMITS to accomplish.
            """
            for current_intention in current_intentions:
                if current_intention == self.goals[0] and current_beliefs.current_world_model.location["target_object"] \
                        == "container":
                    current_intentions = ""  # if goal(s) achieved, empty I
            return current_intentions
from monitoring import Monitoring
from records import Records

# name = input("Please Enter name: ")
# weight= int(input("Please Enter your weight in kg: "))
# calories=int(input("Please Enter your burned calory in kcal: "))

M1 = Monitoring("yuxuan", "female", 22, 174, 55, 1778)
M1.new_weight(55)
M1.new_calory(1893)
M1.new_weight(56.4)
M1.new_calory(1993)
M1.new_weight(57.4)
M1.new_calory(1893)
M1.new_weight(58.4)
M1.new_calory(1893)
M1.new_weight(58.4)
M1.weight_calory_plot()
Exemple #27
0
 def readdata(self, gpio):
     m = Monitoring()
     m.run()
     m.read(self.ser, gpio)
     m.store()
Exemple #28
0
class TCPClient:
    def __init__(self):
        self._user = User()
        self._command = Command()
        self._type_package = 0

        self.__readConfig()

    def send(self):
        package = Package()
        package.type = self._type_package
        package.user = self._user
        package.command = self._command
        PACKAGE = package.getPackage()

        s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        s.connect((TCP_IP, TCP_PORT))
        s.send(PACKAGE)
        data = s.recv(BUFFER_SIZE)
        s.close()

        package = Package()
        package.setPackage(data)

        if package.type == 0:
            pass

        if package.type == 1:
            message = str(package.data)
            #message = message.split('$$NEWLINE$$ $$NEWLINE$$')
            #message = '\n'.join(message)
            #message = message.replace('$$NEWLINE$$','',1)
            print message
        if package.type == 2:
            print "Status: {}".format(package.data)
        if package.type == 3:
            print "Data sending"

    def setCommand(self, id, command, variables=''):
        var = ' '.join(variables)
        self._type_package = 0
        self._command.id = id
        self._command.name = command
        self._command.variables = var
        #print "Calling command: ID={}: {}({})".format(self.command.id, self.command.name, self.command.variables)

    def setTypePackage(self, type=0):
        self._type_package = type

    def sendFile(self, filename):
        s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        s.connect((TCP_IP, TCP_PORT))
        package = Package(3)
        package.command.variables = ' '.join([filename, 'wb'])

        print "Starting sending file"
        with open(filename,'rb') as file:
            print 'Sending..'
            data = file.read(2048)

            package.command.name = 'send_file'
            package.data = data.encode()
            s.send(package.getPackage())
            package.command.variables = '{} {}'.format(filename, 'a')

    def __readConfig(self):
        self._configfile = 'client.ini'
        self._config = ConfigParser.RawConfigParser()
        self._config.read(self._configfile)
        self._monitoring = Monitoring()

        self._user.name = self._config.get("server", 'username')

        try:
            try: self.__TCP_IP = self._config.get("server", 'tcp_ip')
            except ConfigParser.NoOptionError: self.__TCP_IP = TCP_IP
            try: self.__TCP_PORT = self._config.getint("server", 'tcp_port')
            except ConfigParser.NoOptionError: self.__TCP_PORT = TCP_PORT
            try: self.__BUFFER_SIZE = self._config.getint("server", 'buffer_size')
            except ConfigParser.NoOptionError: self.__BUFFER_SIZE = BUFFER_SIZE

        except ConfigParser.NoSectionError:
            self.__TCP_IP = TCP_IP
            self.__TCP_PORT = TCP_PORT
            self.__BUFFER_SIZE = BUFFER_SIZE

    def getServerParameters(self):
        return self.__TCP_IP, self.__TCP_PORT, self.__BUFFER_SIZE

    def setServerParameters(self, tcp_ip, tcp_port, buffer_size):
        self.__TCP_IP = tcp_ip
        self.__TCP_PORT = tcp_port
        self.__BUFFER_SIZE = buffer_size

        self._config.set("server", 'ip', self.__TCP_IP)
        self._config.set("server", 'port', self.__TCP_PORT)
        self._config.set("server", 'buffer_size', self.__BUFFER_SIZE)

        with open(self._configfile, 'wb') as configfile:
            self._config.write(configfile)

        print self._monitoring.Status()
        message = "Set socket: {}:{}".format(self.__TCP_IP, TCP_PORT)
        self._monitoring.sendMessage(message)
        print self._monitoring.Status()

    def setUser(self, username):
        self._user.name = username
        print "Set username: {}".format(username)

        self._config.set("server", 'username', self._user.name)
        with open(self._configfile, 'wb') as configfile:
            self._config.write(configfile)

    def getUser(self):
        return self._user.name
Exemple #29
0
    class BDIBehaviour(PeriodicBehaviour):
        async def on_start(self):

            self.terminate = False
            self.SUCCESS = False
            self.verbose = False
            # Initialization
            self.htn_planner = HierarchicalTaskNetworkPlanner()
            self.goal = [('transfer_target_object_to_container', 'arm',
                          'target_object', 'table', 'container')]
            self.intentions = self.goal  # I := I0; Initial Intentions
            self.beliefs = WorldModel()  # B := B0; Initial Beliefs
            self.monitoring = Monitoring()
            self.perception = Perception()
            self.coordination = Coordination()

            # Disable all 3 coordination switches for testing
            self.coordination.control.send_requests = True
            self.coordination.control.center_init = False
            self.coordination.control.detect_last_position = True

            self.what, self.why, self.how_well, self.what_else, self.why_failed = "", "", "", "", ""
            self.plans = []
            self.start_time = datetime.datetime.now()

        async def run(self):
            # print(f"-- Sender Agent: PeriodicSenderBehaviour running at {datetime.datetime.now().time()}: {self.counter}")
            print("run tick: {}".format(self.beliefs.current_world_model.tick))

            # msg = Message(to="madks2@temp3rr0r-pc")  # Instantiate the message
            # msg.body = "Hello World: " + str(self.counter)  # Set the message content
            # await self.send(msg)

            self.add_belief()
            self.add_desire()
            self.add_intention()
            print("-- Sender Agent: Message sent!")

            if self.beliefs.update_tick(
            ) > self.beliefs.current_world_model.max_ticks:
                self.done()
                self.kill()
            else:
                SUCCESS = True if self.intentions == "" else False
                self.plans = self.htn_planner.get_plans(
                    self.beliefs.current_world_model,
                    self.intentions)  # π := plan(B, I); MEANS_END REASONING

        async def on_end(self):
            print("-- on_end")
            # stop agent from behaviour
            await self.agent.stop()

        # async def _step(self):
        #     # the bdi stuff
        #     pass
        #
        def add_belief(self):
            print("-- Sender Agent: add_belief")
            percept = self.perception.get_percept(text_engraving=(
                self.why_failed,
                self.how_well))  # get next percept ρ; OBSERVE the world
            self.beliefs = self.perception.belief_revision(
                self.beliefs, percept)  # B:= brf(B, ρ);
            self.beliefs = self.monitoring.fire_events(self.beliefs, percept)

        def add_desire(self):
            print("-- Sender Agent: add_desire")

        def add_intention(self):
            print("-- Sender Agent: add_intention")
            self.intentions = self.deliberate(
                self.beliefs, self.intentions
            )  # DELIBERATE about what INTENTION to achieve next

        def done(self):
            # the done evaluation
            print("-- Sender Agent: Done")

        def deliberate(self, current_beliefs, current_intentions):
            """
            Decide WHAT sate of affairs you want to achieve.
            :param current_beliefs: WordModel instance, the world model, information about the world.
            :param current_intentions: List of tuples, tasks that the agent has COMMITTED to accomplish.
            :return: List of tuples, filtered intentions that the agent COMMITS to accomplish.
            """
            # 1. Option Generation: The agent generates a set of possible alternatives.
            current_desires = current_intentions  # TODO: D := option(B, I);

            # 2. Filtering: Agent chooses between competing alternatives and commits to achieving them.
            current_intentions = self.filter_intentions(
                current_beliefs, current_desires,
                current_intentions)  # I := filter(B, D, I);

            return current_intentions

        def filter_intentions(self, current_beliefs, current_desires,
                              current_intentions):
            """
            Choose between competing alternatives and COMMITTING to achieving them.
            :param current_beliefs: WordModel instance, the world model, information about the world.
            :param current_desires: List of tuples, tasks that the agent would like to accomplish.
            :param current_intentions: List of tuples, tasks that the agent has COMMITTED to accomplish.
            :return: List of tuples, filtered intentions that the agent COMMITS to accomplish.
            """
            for current_intention in current_intentions:
                if current_intention == (
                'transfer_target_object_to_container', 'arm', 'target_object', 'table', 'container') \
                        and current_beliefs.current_world_model.location["target_object"] == "container":
                    current_intentions = ""  # if goal(s) achieved, empty I
            return current_intentions
Exemple #30
0
class SimpleNetworkExperiment(Experiment):
    def __init__(self, conn, conf_file, setName, title, duration, tcpdump_if,
                 tcpdump_port):
        self.conn = conn
        self.conf_file = conf_file
        self.setName = setName
        self.title = title
        self.duration = duration
        self.tcpdump_if = tcpdump_if
        self.tcpdump_port = tcpdump_port
        self.exp_name = 'exp_' + title + '_' + str(int(time.time()))
        self.mon_controller = self.conn.monHostName
        self.iot = self.conn.monHostName  # this is the same host where the Lattice controller id running
        self.edge = self.conn.clusterMgmHostName  # the host where the processing functions are (cm in the case of faas / containers)
        self.receiver = self.conn.receiverHostName
        Experiment.__init__(self, conn, self.exp_name, self.setName)
        self.init()

    def startIoT(self):
        command = 'java -cp /home/uceeftu/lattice/jars/monitoring-bin-core-2.0.1.jar mon.lattice.appl.demo.iot.IotEmulator ' \
                  + self.conf_file + ' ' + str(self.duration)
        result = self.monHost.run(command)

    def init(self):
        # create dir: /home/setName/name/
        self.exp_path = os.getenv("HOME") + '/' + self.setName + '/'
        if not os.path.exists(self.exp_path):
            os.makedirs(self.exp_path)

        self.exp_path = self.exp_path + self.exp_name
        os.mkdir(self.exp_path)

        print('Starting experiment ' + self.setName + ' / ' + self.exp_name)
        print('Redirecting output to: ' + self.exp_path + '/output.log')
        print('Redirecting error to: ' + self.exp_path + '/error.log')

        self.stdout = sys.stdout
        self.stderr = sys.stderr
        sys.stdout = open(self.exp_path + '/output.log', 'w')
        sys.stderr = open(self.exp_path + '/error.log', 'w')

        #setting exp title in file
        f = open(self.exp_path + '/title.txt', 'w')
        f.write(self.title)
        f.close()

        print('+++ IoT: ' + self.conn.monHostName)
        print('+++ Edge: ' + self.conn.clusterMgmHostName)
        print('+++ Receiver: ' + self.conn.receiverHostName)

    def cleanup(self):
        sys.stdout.close()
        sys.stderr.close()

        sys.stdout = self.stdout
        sys.stderr = self.stderr
        print('Experiment ' + self.exp_path + ' completed')

    def startMon(self):
        print('Starting Mon')
        self.monitor = Monitoring(self.mon_controller, '6666', self.exp_path,
                                  self.iot, self.edge, self.tcpdump_if,
                                  self.tcpdump_port, self.receiver)
        self.monitor.init()
        self.monitor.set_consumer_pid(self.consumer_PID)
        self.monitor.start_components()
        self.monitor.start_monitoring()

    def stopMon(self):
        print('Stopping Mon')
        self.monitor.stop_monitoring()
        self.monitor.stop_components()
        self.monitor.cleanup()
        self.__cleanup_tcpdump()

    #we need this until we manage to kill child tcpdump process properly
    def __cleanup_tcpdump(self):
        command = 'killall tcpdump'
        result = self.clusterMgmHost.sudo(command, pty=True)

    def saveIotConf(self):
        # copy iot.properties into setName/name
        print('Saving iot emulator conf file')
        copy(self.conf_file, self.exp_path + '/iot.properties')

    def startConsumer():
        raise NotImplementedError('subclasses must override startConsumer!')

    def stopConsumer():
        raise NotImplementedError('subclasses must override stopConsumer!')

    def collectLatticeLogs(self):
        directory = self.exp_path + '/ds/'
        command = 'mkdir ' + directory
        result = self.monHost.run(command)
        if result.ok == True:
            command = 'cp /tmp/data-source-* ' + directory
            result = self.monHost.run(command)
            if result.ok == True:
                print('Successfully imported  ds logs')
        Experiment.collectLatticeLogs(self)

    def collectConsumerStats(self):
        directory = self.exp_path + '/'
        command = 'mv /tmp/stats_*.log ' + directory
        result = self.clusterMgmHost.run(command)
        if result.ok == True:
            print('Successfully imported consumer stats')

    def start(self):
        self.startLattice()
        self.startConsumer()
        self.startMon()
        self.startIoT()
        self.stopMon()
        self.stopConsumer()
        self.stopLattice()
        self.collectLatticeLogs()
        self.saveIotConf()
        self.collectTimestamp()
        self.collectConsumerStats()
        self.cleanup()
Exemple #31
0
c1 = CTControllerScaleXNode(1, initCores, maxCores, BC=3, DC=15)
c2 = OPTCTRL(monitoringWindow,
             init_cores=initCores,
             st=0.8,
             stime=[1 / stimes[i] for i in range(appsCount)],
             maxCores=maxCores)
c2.setName("OPTCTRL")
c2.reset()

runner = Runner(
    horizon, [c2, c1],
    monitoringWindow,
    app,
    lambda window, sla: MultiMonitoring(
        [Monitoring(monitoringWindow, appsSLA[i]) for i in range(appsCount)]),
    name=name)
g = MultiGenerator([SP2, RP2])
runner.run(g)

g = MultiGenerator([RP2, SP2])
runner.run(g)

g = MultiGenerator([SN2, SP2])
runner.run(g)

g = MultiGenerator([SP2, SN2])
runner.run(g)

g = MultiGenerator([SN2, RP2])
runner.run(g)
Exemple #32
0
class Gru:
    def __init__(self):
        self.minions = []
        self.monitor = None

    def start_monitoring_local(self):
        # monitoring lokal in thread starten
        if self.monitor is None:
            self.monitor = Monitoring()
            self.monitor.start()
            return True
        else:
            return False

    def start_monitoring_remote(self, remote):
        # TODO Monitoring mithilfe von salt auf minion starten
        return False

    def stop_monitoring_local(self):
        if self.monitor is None:
            return False
        else:
            self.monitor.stop()
            self.monitor = None
            return True

    def stop_monitoring_remote(self, remote):
        requests.get("http://{}:5000/stop".format(remote))

    def add_regex_local(self, regex):
        # einen neuen regelären ausdruck für den lokalen monitor hinzufügen
        if self.monitor is None:
            return False
        else:
            self.monitor.regs.append(regex)
            return True

    def add_regex_remote(self, remote, regex):
        # einen neuen regelären ausdruck für den remote monitor hinzufügen
        requests.post("http://{}:5000/add_regex".format(remote), data={'regex': regex})

    def remove_regex_local(self, regex):
        if self.monitor is None:
            return False
        else:
            self.monitor.remove_regex(regex)
            return True

    def remove_regex_remote(self, remote, regex):
        requests.post("http://{}:5000/del_regex".format(remote), data={'regex': regex})

    def list_regex_local(self):
        if self.monitor is None:
            return None
        else:
            return self.monitor.regs

    def list_regex_remote(self, remote):
        response = requests.get("http://{}:5000/list_regex".format(remote))
        return json.loads(response.content)

    def get_events(self):
        events = []
        if self.monitor is not None:
            events.extend(self.monitor.get_events_dict())

        for minion in self.minions:
            response = requests.get("http://{}:5000/get_events".format(minion))
            events.extend(json.loads(response.content))
        # events von allen aktiven monitor instanzen abfragen

        return events
Exemple #33
0
class DeepQNetwork(object):
    def __init__(self, height, width, num_actions, state_frames, gamma, batch_size=32):
        self.gamma = gamma
        self.num_actions = num_actions
        self.input_var = T.tensor4('inputs')
        self.target_var = T.vector('targets')
        self.actions_var = T.matrix()

        self.input_shared = theano.shared(np.zeros([batch_size, state_frames, height, width]),
                                          dtype=theano.tensor.floatX)
        self.taret_shared = theano.shared(np.zeros([batch_size, 1]), dtype=theano.tensor.floatX)
        self.actions_shared = theano.shared(np.zeros([batch_size, num_actions]).astype('int32'),
                                            dtype=theano.tensor.int32)

        self.net = get_inference(self.input_var, num_actions, height, width, state_frames)
        self.prediction = (lasagne.layers.get_output(self.net) * self.actions_var).sum(axis=1)
        self.error = T.sqr(self.target_var - self.prediction).mean()

        params = lasagne.layers.get_all_params(self.net, trainable=True)
        #self.opt = lasagne.updates.rmsprop(
        #    self.error, params, learning_rate=0.0025, epsilon=0.01)
        #self.opt = lasagne.updates.adagrad(
        #    self.error, params, learning_rate=0.001
        #)
        self.opt = gen_updates_rmsprop(params, T.grad(self.error, params))

        self.train_step = theano.function([self.input_var, self.target_var, self.actions_var],
                                          self.error, updates=self.opt, allow_input_downcast=True)
        self.net_fun = theano.function([self.input_var], lasagne.layers.get_output(self.net),
                                       allow_input_downcast=True)

        self.monitor = Monitoring()

        self.pred_fun = theano.function([self.input_var, self.actions_var], self.prediction, allow_input_downcast=True)
        self.error_fun = theano.function([self.input_var, self.target_var, self.actions_var], self.error,
                                         allow_input_downcast=True)


    def get_best_action(self, example):
        vals = self.evaluate_network([example])[0]
        return np.argmax(vals), vals

    def evaluate_network(self, batch):
        return self.net_fun(batch)

    def train(self, batch):
        batch_size = batch['batch_size']
        self.monitor.report_action_start('get_target')
        target = self.get_target(batch)
        self.monitor.report_action_finish('get_target')
        actions = np.zeros([batch_size, self.num_actions])
        actions[:, list(batch['actions'])] = 1


        self.monitor.report_action_start('pred_fun')
        self.pred_fun(batch['states_1'], actions)
        self.monitor.report_action_finish('pred_fun')

        self.monitor.report_action_start('error_fun')
        self.error_fun(batch['states_1'], target, actions)
        self.monitor.report_action_finish('error_fun')



        self.monitor.report_action_start('train_step')
        error_val = self.train_step(batch['states_1'], target, actions)
        self.monitor.report_action_finish('train_step')


        return error_val

    def get_target(self, batch):
        batch_size = batch['batch_size']
        self.monitor.report_action_start('only_q')
        q_vals = self.evaluate_network(batch['states_2'])
        self.monitor.report_action_finish('only_q')
        best_actions = np.argmax(q_vals, 1)
        target = np.choose(best_actions, q_vals.T)
        for i in xrange(batch_size):
            if batch['terminations'][i]:
                mul = 0
            else:
                mul = self.gamma
            target[i] = batch['rewards'][i] + mul * target[i]
        return target
Exemple #34
0
# flake8: noqa
from flask import Flask, render_template
from monitoring import Monitoring
app = Flask(__name__)
monitor = Monitoring(backend=False)


@app.route('/')
def main_page():
    return "Your monitor is started"


def run_webmonitor():
    app.run()


if __name__ == "__main__":
    run_webmonitor()
Exemple #35
0
horizon = 300
monitoringWindow = 1
ctPeriod = 1
maxCores = 200000

Names=[f'App{i}' for i in range(1, appsCount+1)]
srateAvg=[1.0/stime for stime in stimes]
initCores=[1 for _ in stimes]
app=AppsCluster(appNames=Names,srateAvg=srateAvg,initCores=initCores,isDeterministic=False)
AppsCluster.sla=appsSLA


c1 = CTControllerScaleXNode(1, initCores, maxCores, BCs=3, DCs=15)
c2 = OPTCTRL(monitoringWindow, init_cores=initCores, st=0.8, stime=[1/stimes[i] for i in range(appsCount)],maxCores=maxCores)
c2.setName("OPTCTRL")
c2.reset()



runner = Runner(horizon, [c2], monitoringWindow, app, lambda window, sla: MultiMonitoring([Monitoring(monitoringWindow, appsSLA[i]) for i in range(appsCount)]), name=name)
g = MultiGenerator([RP1, RP1])
runner.run(g)

# g = MultiGenerator([SN1, SN1])
# runner.run(g)
#
# g = MultiGenerator([SP1, SP1])
# runner.run(g)

runner.log()
runner.plot()
Exemple #36
0
def main():
    global monitor
    monitor = Monitoring()
    monitor.start()

    app.run(debug=True, use_reloader=False)