def __init__(self,
              policy_value_fn,
              c_puct=5,
              n_playout=2000,
              is_selfplay=0):
     self.mcts = MCTS(policy_value_fn, c_puct, n_playout)
     self.is_selfplay = is_selfplay
Exemple #2
0
    def test_mcts_from_root_with_equal_priors(self):
        class MockModel:
            def predict(self, board):
                # starting board is:
                # [0, 0, 1, -1]
                return np.array([0.26, 0.24, 0.24, 0.26]), 0.0001

        game = Connect2Game()
        args = {'num_simulations': 50}

        model = MockModel()
        mcts = MCTS(game, model, args)
        canonical_board = [0, 0, 0, 0]
        print("starting")
        root = mcts.run(model,
                        canonical_board,
                        to_play=1,
                        add_exploration_noise=False)

        # the best move is to play at index 1 or 2
        best_outer_move = max(root.children[0].visit_count,
                              root.children[0].visit_count)
        best_center_move = max(root.children[1].visit_count,
                               root.children[2].visit_count)
        self.assertGreater(best_center_move, best_outer_move)
Exemple #3
0
    def exceute_episode(self):

        train_examples = []
        current_player = 1
        state = self.game.get_init_board()

        while True:
            canonical_board = self.game.get_canonical_board(
                state, current_player)

            self.mcts = MCTS(self.game, self.model, self.args)
            root = self.mcts.run(self.model, canonical_board, to_play=1)

            action_probs = [0 for _ in range(self.game.get_action_size())]
            for k, v in root.children.items():
                action_probs[k] = v.visit_count

            action_probs = action_probs / np.sum(action_probs)
            train_examples.append(
                (canonical_board, current_player, action_probs))

            action = root.select_action(temperature=0)
            state, current_player = self.game.get_next_state(
                state, current_player, action)
            reward = self.game.get_reward_for_player(state, current_player)

            if reward is not None:
                ret = []
                for hist_state, hist_current_player, hist_action_probs in train_examples:
                    # [Board, currentPlayer, actionProbabilities, Reward]
                    ret.append(
                        (hist_state, hist_action_probs, reward *
                         ((-1)**(hist_current_player != current_player))))

                return ret
Exemple #4
0
def play_game():
    tree = MCTS()
    board = new_domineering_board()
    board.to_pretty_string()
    while True:
        row_col = input("enter row,col: ")
        row, col = map(int, row_col.split(","))
        stdout.write('You choose ({}, {})'.format(row, col))
        index = conf.BOARD_Y_SIZE * (row - 1) + (col - 1)
        if (board.tup[index] is not None) and (
                board.is_valid_move(index + conf.BOARD_Y_SIZE)):
            raise RuntimeError("Invalid move")
        board = board.make_move(index)
        board.to_pretty_string()
        if board.terminal:
            stdout.write("\nWinner is {}".format(
                conf.PLAYERS_NAME[board.winner]))
            break
        # You can train as you go, or only at the beginning.
        # Here, we train as we go, doing fifty rollouts each turn.
        for _ in range(conf.TRAINING_EPOCHS):
            tree.do_rollout(board)
        board = tree.choose(board)
        board.to_pretty_string()
        if board.terminal:
            stdout.write("\nWinner is {}".format(
                conf.PLAYERS_NAME[board.winner]))
            break
Exemple #5
0
def play_game():
    tree = MCTS()
    board = new_tic_tac_toe_board()
    print(board.to_pretty_string())
    while True:
        row_col = input("enter row,col: ")
        row, col = map(int, row_col.split(","))
        index = 3 * (row - 1) + (col - 1)
        if board.tup[index] is not None:
            raise RuntimeError("Invalid move")
        board = board.make_move(index)
        print(board.to_pretty_string())
        if board.terminal:
            break
        # You can train as you go, or only at the beginning.
        # Here, we train as we go, doing fifty rollouts each turn.
        for _ in range(2):
            tree.do_rollout(board)
            print(tree.children)
            print(len(tree.children[board]))
            for b in tree.children[board]:
                print(colored(b.to_pretty_string(), 'green'))
        board = tree.choose(board)
        print(board.to_pretty_string())
        if board.terminal:
            break
Exemple #6
0
def play_game_ocba(budget=1000, optimum=0, n0=5, sigma_0=1):
    mcts = MCTS(policy='ocba',
                budget=budget,
                optimum=optimum,
                n0=n0,
                sigma_0=sigma_0)
    tree = new_tree()

    for _ in range(budget):
        mcts.do_rollout(tree)
    next_tree = mcts.choose(tree)

    return (mcts, tree, next_tree)
Exemple #7
0
class MCTSAI(AI):
    tree = MCTS()

    def __init__(self, name: str, nRollout: int = 5):
        self.nRollout: int = nRollout
        super().__init__(name)

    def play(self, state: ReversiState):
        for _ in range(self.nRollout):
            self.tree.do_rollout(state)
        return self.tree.choose(state)

        to_char = lambda v: ("⚫" if v is True else ("⚪"
                                                    if v is False else " "))
Exemple #8
0
    def test_mcts_finds_best_move_with_equal_priors(self):
        class MockModel:
            def predict(self, board):
                return np.array([0.51, 0.49, 0, 0]), 0.0001

        game = Connect2Game()
        args = {'num_simulations': 25}

        model = MockModel()
        mcts = MCTS(game, model, args)
        canonical_board = [0, 0, -1, 1]
        root = mcts.run(model, canonical_board, to_play=1)

        # the better move is to play at index 1
        self.assertLess(root.children[0].visit_count,
                        root.children[1].visit_count)
Exemple #9
0
def play_game_uct(budget=1000,
                  exploration_weight=1,
                  optimum=0,
                  n0=2,
                  sigma_0=1):
    mcts = MCTS(policy='uct',
                exploration_weight=exploration_weight,
                budget=budget,
                n0=n0,
                sigma_0=sigma_0)
    tree = new_tree()

    for _ in range(budget):
        mcts.do_rollout(tree)

    next_tree = mcts.choose(tree)

    return (mcts, tree, next_tree)
Exemple #10
0
    def exceute_episode(self):

        train_examples = []
        current_player = 1
        episode_step = 0
        state = self.game.get_init_board()

        while True:
            episode_step += 1

            canonical_board = self.game.get_canonical_board(
                state, current_player)

            temp = int(episode_step < self.args['tempThreshold'])
            add_exploration_noise = temp > 0

            self.mcts = MCTS(self.game, self.model, self.args)
            root = self.mcts.run(self.model,
                                 canonical_board,
                                 to_play=1,
                                 add_exploration_noise=add_exploration_noise)

            action_probs = [0 for _ in range(self.game.get_action_size())]
            for k, v in root.children.items():
                action_probs[k] = v.visit_count

            action_probs = action_probs / np.sum(action_probs)
            train_examples.append(
                (canonical_board, current_player, action_probs))

            action = root.select_action(temp)
            state, current_player = self.game.get_next_state(
                state, current_player, action)
            reward = self.game.get_game_ended(state, current_player)

            if reward is not None:
                ret = []
                for hist_state, hist_current_player, hist_action_probs in train_examples:
                    # [Board, currentPlayer, actionProbabilities, Reward]
                    ret.append(
                        (hist_state, hist_action_probs, reward *
                         ((-1)**(hist_current_player != current_player))))

                return ret
Exemple #11
0
    def test_mcts_finds_best_move_with_really_bad_priors(self):
        class MockModel:
            def predict(self, board):
                # starting board is:
                # [0, 0, 1, -1]
                return np.array([0.3, 0.7, 0, 0]), 0.0001

        game = Connect2Game()
        args = {'num_simulations': 25}

        model = MockModel()
        mcts = MCTS(game, model, args)
        canonical_board = [0, 0, 1, -1]
        print("starting")
        root = mcts.run(model, canonical_board, to_play=1)

        # the best move is to play at index 1
        self.assertGreater(root.children[1].visit_count,
                           root.children[0].visit_count)
    def exceute_episode(self):

        train_examples = []
        current_player = 1
        state = gogame.init_state(self.args['boardSize'])

        while True:
            #print("while True")
            canonical_board = gogame.canonical_form(state)

            self.mcts = MCTS(self.game, self.model, self.args)
            root = self.mcts.run(self.model, canonical_board, to_play=1)

            action_probs = [
                0 for _ in range((self.args['boardSize'] *
                                  self.args['boardSize']) + 1)
            ]
            for k, v in root.children.items():
                action_probs[k] = v.visit_count

            action_probs = action_probs / np.sum(action_probs)
            train_examples.append(
                (canonical_board, current_player, action_probs))

            action = root.select_action(temperature=1)
            state = gogame.next_state(state, action, canonical=False)
            current_player = -current_player
            reward = gogame.winning(
                state) * current_player if gogame.game_ended(state) else None

            if reward is not None:
                ret = []
                for hist_state, hist_current_player, hist_action_probs in train_examples:
                    # [Board, currentPlayer, actionProbabilities, Reward]
                    tfBoard = np.array(
                        [hist_state[0], hist_state[1],
                         hist_state[3]]).transpose().tolist()
                    #ret.append(np.array([tfBoard,tfBoard, hist_action_probs, reward * ((-1) ** (hist_current_player != current_player))]))
                    ret.append(
                        (tfBoard, hist_action_probs, reward *
                         ((-1)**(hist_current_player != current_player))))
                return ret
def mcts_playout(depth, num_iter, num_rollout, exploration_weight):
    root, leaf_nodes_dict = make_binary_tree(depth=depth)
    leaf_nodes_dict_sorted = sorted(leaf_nodes_dict.items(),
                                    key=lambda x: x[1],
                                    reverse=True)
    print("Expected (max) leaf node: {}, value: {}".format(
        leaf_nodes_dict_sorted[0][0], leaf_nodes_dict_sorted[0][1]))
    print("Expected (min) leaf node: {}, value: {}".format(
        leaf_nodes_dict_sorted[-1][0], leaf_nodes_dict_sorted[-1][1]))

    mcts = MCTS(exploration_weight=exploration_weight)
    while True:
        # we run MCTS simulation for many times
        for _ in range(num_iter):
            mcts.run(root, num_rollout=num_rollout)
        # we choose the best greedy action based on simulation results
        root = mcts.choose(root)
        # we repeat until root is terminal
        if root.is_terminal():
            print("Found optimal (max) leaf node: {}, value: {}".format(
                root, root.value))
            return root.value
Exemple #14
0
    def test_mcts_finds_best_move_with_really_really_bad_priors(self):
        class MockModel:
            def predict(self, board):
                # starting board is:
                # [-1, 0, 0, 0]
                return np.array([0, 0.3, 0.3, 0.3]), 0.0001

        game = Connect2Game()
        args = {'num_simulations': 100}

        model = MockModel()
        mcts = MCTS(game, model, args)
        canonical_board = [-1, 0, 0, 0]
        root = mcts.run(model,
                        canonical_board,
                        to_play=1,
                        add_exploration_noise=False)

        # the best move is to play at index 1
        self.assertGreater(root.children[1].visit_count,
                           root.children[2].visit_count)
        self.assertGreater(root.children[1].visit_count,
                           root.children[3].visit_count)
Exemple #15
0
 def __init__(self, game, model, args):
     self.game = game
     self.model = model
     self.args = args
     self.mcts = MCTS(self.game, self.model, self.args)
Exemple #16
0
 def __init__(self, _id):
     super().__init__(_id)
     self.opponent_id = None
     self.tree = MCTS()