def run_custom_model(): for year in ("2016", "2017"): cfg = Configuration(random_forest.Model(), load_climbset(year), CategoricalPreprocessor()) cfg.run() Configuration.report_headings() print(cfg.report())
def search(): parameter_args = ParameterSpace().product() hyper_parameter_combinations = [ Parameters(*args) for args in parameter_args ] print(f"Generated {len(hyper_parameter_combinations)} sets of parameters") train_func = partial(train_model, climbset=load_climbset("2016")) results = list(map(train_func, hyper_parameter_combinations)) pprint(results)
def generate_all_valid_configurations(): configs = [] for year in ("2016", "2017"): # XGBoost configs.append( Configuration(xgboost_model.Model(), load_climbset(year), FlandersPreprocessor())) # Random forest flanders proprocessor configs.append( Configuration(random_forest.Model(), load_climbset(year), FlandersPreprocessor())) # Loop through categorical grade preprocessors for preprocessor in ( CategoricalPreprocessor(), SplitPreprocessor(4), HalfGradePreprocessor(), ): # LSTM configs.append( Configuration( keras_lstm_grade.Model(), load_climbset(year), preprocessor, HoldListPreprocessor(), )) # MLP configs.append( Configuration(keras_mlp.Model(), load_climbset(year), preprocessor)) # Random forest configs.append( Configuration(random_forest.Model(), load_climbset(year), preprocessor)) print(f"Generated {len(configs)} configruations.") return configs
def main(year): num_climbs = 500 # Load climbset climbset = load_climbset(year) # Sample generators lstm = keras_lstm_gen.Model() sampling_parameters = params.Parameters() sample = lstm.sample(climbset, num_climbs, sampling_parameters) # Save to file file_data = {"original": climbset, "lstm": sample} print(f"Saving {len(file_data)} climbsets") pickle.dump(file_data, open(local_file_path(__file__, f"{year}.pickle"), "wb"))
def prep_no_grade(): output_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input.txt") with open(output_path, "w") as handle: handle.write(load_climbset().no_grade_string()) return output_path