Exemple #1
0
 def plot(self):
     g = Plot(
         dict(
             width=640,
             height=480,
             graph_title="Plot",
             show_graph_title=True,
             no_css=True,
             key=True,
             scale_x_integers=True,
             scale_y_integers=True,
             min_x_value=0,
             min_y_value=0,
             show_data_labels=True,
             show_x_guidelines=True,
             show_x_title=True,
             x_title="Time",
             show_y_title=True,
             y_title="Ice Cream Cones",
             y_title_text_direction='bt',
         ))
     # add a few random datasets
     for n in range(1, 4):
         g.add_data(
             dict(data=flatten(get_data_set()), title='series %d' % n))
     res = XML(g.burn())
     return render(chart=res)
Exemple #2
0
 def min_value(self):
     if self.min_scale_value:
         return self.min_scale_value
     data = map(itemgetter('data'), self.data)
     if self.stacked:
         data = self.get_cumulative_data()
     return min(flatten(data))
Exemple #3
0
 def min_value(self):
     if self.min_scale_value:
         return self.min_scale_value
     data = map(itemgetter('data'), self.data)
     if self.stacked:
         data = self.get_cumulative_data()
     return min(flatten(data))
Exemple #4
0
	def plot(self):
		g = Plot(dict(
			width = 640,
			height = 480,
			graph_title = "Plot",
			show_graph_title = True,
			no_css = True,
			key = True,
			scale_x_integers = True,
			scale_y_integers = True,
			min_x_value = 0,
			min_y_value = 0,
			show_data_labels = True,
			show_x_guidelines = True,
			show_x_title = True,
			x_title = "Time",
			show_y_title = True,
			y_title = "Ice Cream Cones",
			y_title_text_direction = 'bt',
		))
		# add a few random datasets
		for n in range(1, 4):
			g.add_data(dict(
				data = flatten(get_data_set()),
				title = 'series %d' % n,
				))
		res = XML(g.burn())
		return render(chart=res)
Exemple #5
0
def test_lines_completes(gzip_stream):
	"""
	When reading lines from a gzip stream, the operation should complete
	when the stream is exhausted.
	"""
	chunks = gzip.read_chunks(gzip_stream)
	streams = gzip.load_streams(chunks)
	lines = flatten(map(gzip.lines_from_stream, streams))
	consume(lines)
Exemple #6
0
	def test_iterable_data_flat(self):
		g = Plot()
		spec = dict(
			data=flatten(self.get_data()),
			title='labels',
		)
		g.add_data(spec)
		svg = g.burn()
		assert 'text="(1.00, 0.00)"' in svg
Exemple #7
0
	def test_iterable_data_flat(self):
		g = Plot()
		spec = dict(
			data=flatten(self.get_data()),
			title='labels',
		)
		g.add_data(spec)
		svg = g.burn()
		assert b'text="(1.00, 0.00)"' in svg
Exemple #8
0
def test_lines_from_stream(gzip_stream):
	chunks = gzip.read_chunks(gzip_stream)
	streams = gzip.load_streams(chunks)
	lines = flatten(map(gzip.lines_from_stream, streams))
	first_line = next(lines)
	assert first_line == '['
	second_line = next(lines)
	result = json.loads(second_line.rstrip('\n,'))
	assert isinstance(result, dict)
	assert 'id' in result
Exemple #9
0
 def nearest_weekday(self, calendar):
     """
     Return the nearest weekday to self.
     """
     weekend_days = calendar.get_weekend_days()
     deltas = (timedelta(n) for n in itertools.count())
     candidates = recipes.flatten(
         (self - delta, self + delta)
         for delta in deltas
     )
     matches = (
         day for day in candidates
         if day.weekday() not in weekend_days
     )
     return next(matches)
Exemple #10
0
 def nearest_weekday(self, calendar):
     """
     Return the nearest weekday to self.
     """
     weekend_days = calendar.get_weekend_days()
     deltas = (timedelta(n) for n in itertools.count())
     candidates = recipes.flatten(
         (self - delta, self + delta)
         for delta in deltas
     )
     matches = (
         day for day in candidates
         if day.weekday() not in weekend_days
     )
     return next(matches)
Exemple #11
0
def __main():
    models = (
        "4300u,4450u,4500u,4600u,4650u,"
        "4600h,4600hs,4700u,4750u,4800u,4800h,4800hs,4900h,4900HS".split(",")
    )

    models = """4450u,4650u,4900HS""".split(",")

    query_data = __prepare_query_data(models)
    pprint(query_data)

    data = flatten(concurrent_map(__get_geekbench_results, query_data))
    DataFrame(data).to_excel(
        os.path.join(os.path.dirname(__file__), "result.xlsx"), index=False
    )
Exemple #12
0
    def __init__(
            self,
            df: pd.DataFrame,
            exposure_path: Path,
            raw_dir: Path,
            name_list: Path,
            transform=transforms.ToTensor(),
            metric="mse",
    ):
        self.exposure_path = exposure_path
        self.transform = transform

        names = flatten(pd.read_csv(name_list).to_numpy())

        by_ev = df.pivot_table(index="name",
                               columns=["metric", "ev"],
                               values="score")
        by_ev = by_ev.loc[by_ev.index.intersection(names)]

        exp_min = -3
        exp_max = 6
        exp_step = 0.25
        evs: np.ndarray = np.linspace(exp_min, exp_max,
                                      int((exp_max - exp_min) / exp_step + 1))
        self.evs = np.array([*evs[evs < 0], *evs[evs > 0]])

        self.ev_indices = {ev: i for (i, ev) in enumerate(self.evs)}

        self.opt_choices = by_ev[metric].idxmin(axis=1)
        self.metric = metric
        self.data = by_ev
        self.names = pd.Series(self.data.index)

        self.generator = DataGenerator(
            raw_path=raw_dir,
            out_path=exposure_path.parent,
            store_path=None,
            compute_scores=False,
        )
Exemple #13
0
 def max_value(self):
     data = map(itemgetter('data'), self.data)
     if self.stacked:
         data = self.get_cumulative_data()
     return max(flatten(data))
Exemple #14
0
 def max_value(self):
     data = map(itemgetter('data'), self.data)
     if self.stacked:
         data = self.get_cumulative_data()
     return max(flatten(data))