Exemple #1
0
def test_create_like(generate_control_input_list):

    for ci in generate_control_input_list:

        assert ControlInput.create_like(control_input=ci).size == ci.size
        assert np.allclose(
            ControlInput.create_like(ci).data, np.zeros(ci.size))
Exemple #2
0
def test_equality(generate_control_input_list):

    i1, i2, i3, i4 = generate_control_input_list

    assert i1 == ControlInput([0, 0])
    assert i2 == ControlInput([1, 2, 3])
    assert i1 != i2
Exemple #3
0
def test_derivative_computation(generate_dubin_model_list):

    d1, d2 = generate_dubin_model_list

    # We only test that the function is called and returns properly, not the
    # actual computation as that cpp side tests this.

    # Test with positional arguments.
    der1 = d1.compute_state_derivative(
        robot_state=State([1, 2, 0], []), control_input=ControlInput(1)
    )

    # In this case, the control input controls the angular velocity and the
    # speed i# constant. Hence the robot must move horizontally (theta=0) with
    # the given speed.
    assert np.allclose(der1.data, [1, 0, 0])

    # Making sure that the derivative can only be computed from control inputs
    # that are of the correct dimensions.
    with pytest.raises(ValueError):
        d1.compute_state_derivative(State(0, 3), ControlInput(1))
    with pytest.raises(ValueError):
        d1.compute_state_derivative(State(3, 1), ControlInput(1))
    with pytest.raises(ValueError):
        d2.compute_state_derivative(State(2, 0), ControlInput(1))
    with pytest.raises(ValueError):
        d2.compute_state_derivative(State(3, 0), ControlInput(2))
Exemple #4
0
def generate_control_input_list():

    # List of velocities constructed in every single way.
    # This also tests initialization.
    ci1 = ControlInput(size=2)
    ci2 = ControlInput([1, 2, 3])
    ci3 = ControlInput((4, 3, 2, 1))
    ci4 = ControlInput(data=np.array([1, 1, 2, 3, 5], dtype=np.float))

    return ci1, ci2, ci3, ci4
def test_derivative_computation(generate_custom_model_list):

    c1, c2, c3 = generate_custom_model_list

    der1 = c1.compute_state_derivative(State([1, 1, 1], [1, 1]),
                                       ControlInput([1, 2, 3, 4, 5]))
    der2 = c2.compute_state_derivative(State([1], [0]), ControlInput([-2, -1]))

    # Test with positional arguments.
    der3 = c3.compute_state_derivative(
        robot_state=State([1, -1], [-0.1, 7, 9.5, 0]),
        control_input=ControlInput([5, 0, -100, -5, 4, 0]),
    )

    assert np.allclose(der1.data, [15.0 + 3.45] * 5)
    assert np.allclose(der2.data, [-2] * 2)
    assert np.allclose(der3.data, [18 + 10] * 6)
def test_derivative_computation(generate_ackermann_model_list):

    a1, a2 = generate_ackermann_model_list

    # We only test that the function is called and returns properly, not the
    # actual computation as the cpp side tests this.

    # Test with positional arguments.
    der1 = a1.compute_state_derivative(robot_state=State([1, 2, 0, 0], []),
                                       control_input=ControlInput(2))

    assert np.allclose(der1.data, [0, 0, 0, 0])

    # Making sure that the derivative can only be computed from control inputs
    # that are of the correct dimensions.
    with pytest.raises(ValueError):
        a1.compute_state_derivative(State(0, 4), ControlInput(2))
    with pytest.raises(ValueError):
        a1.compute_state_derivative(State(4, 1), ControlInput(2))
    with pytest.raises(ValueError):
        a2.compute_state_derivative(State(3, 0), ControlInput(2))
    with pytest.raises(ValueError):
        a2.compute_state_derivative(State(4, 0), ControlInput(3))

    # It should also throw an exception if the steering angle is invalid.
    with pytest.raises(ValueError):
        a1.compute_state_derivative(State([0.0, 0.0, 0.0, 2 * np.pi / 3], []),
                                    ControlInput(2))
    with pytest.raises(ValueError):
        a1.compute_state_derivative(
            State([0.0, 0.0, np.pi / 2, -2 * np.pi / 3], []), ControlInput(2))
Exemple #7
0
def test_addition(generate_control_input_list):

    ci1, ci2, ci3, ci4 = generate_control_input_list

    ci1 += ControlInput(2)
    assert np.allclose(ci1.data, [0, 0])

    res = ci2 + ControlInput(3)
    assert np.allclose(res.data, ci2.data)

    res = ci3 + ControlInput([0, 1, 2, 3])
    assert np.allclose(res.data, [4, 4, 4, 4])

    res = ci4 + ControlInput([-1, -2, -3, -4, -5])
    assert np.allclose(res.data, [0, -1, -1, -1, 0])

    # Test invalid addition.
    with pytest.raises(ValueError):
        ci1 += ControlInput(3)
    with pytest.raises(ValueError):
        res = ci2 + ci3
Exemple #8
0
def test_subtraction(generate_control_input_list):

    ci1, ci2, ci3, ci4 = generate_control_input_list

    ci1 -= ControlInput(2)
    assert np.allclose(ci1.data, [0, 0])

    res = ci2 - ControlInput(3)
    assert np.allclose(res.data, ci2.data)

    res = ci3 - ControlInput([3, 2, 1, 0])
    assert np.allclose(res.data, [1, 1, 1, 1])

    res = ci4 - ControlInput([5, -4, 3, -2, 1])
    assert np.allclose(res.data, [-4, 5, -1, 5, 4])

    # Test invalid addition.
    with pytest.raises(ValueError):
        ci1 -= ControlInput(3)
    with pytest.raises(ValueError):
        res = ci2 - ci3
Exemple #9
0
def test_derivative_computation(generate_tricycle_model_list):

    t1, t2 = generate_tricycle_model_list

    # We only test that the function is called and returns properly, not the
    # actual computation as the cpp side tests this.

    # Test with positional arguments.
    der1 = t1.compute_state_derivative(robot_state=State([1, 2, 3, 4], []),
                                       control_input=ControlInput(2))

    assert np.allclose(der1.data, [0, 0, 0, 0])

    # Making sure that the derivative can only be computed from control inputs
    # that are of the correct dimensions.
    with pytest.raises(ValueError):
        t1.compute_state_derivative(State(0, 4), ControlInput(2))
    with pytest.raises(ValueError):
        t1.compute_state_derivative(State(4, 1), ControlInput(2))
    with pytest.raises(ValueError):
        t2.compute_state_derivative(State(3, 0), ControlInput(2))
    with pytest.raises(ValueError):
        t2.compute_state_derivative(State(4, 0), ControlInput(3))
Exemple #10
0
def test_step_computation(generate_integrator):

    euler_integrator = generate_integrator

    # We don't check the actual computation as the cpp test covers this. We
    # only check if the function calls and returns properly.

    # Test with positional arguments.
    updated_state = euler_integrator.step(robot_state=State([1, 2, 0], []),
                                          control_input=ControlInput([1, -1]),
                                          dt=0.1)

    assert updated_state.size == 3
    assert updated_state.pose.size == 3
    assert updated_state.is_velocity_empty()
Exemple #11
0
def test_step_computation(generate_integrator):

    custom_integrator = generate_integrator

    # Testing a and b
    assert custom_integrator.a == 2
    assert custom_integrator.b == -1

    # Testing the actual computation. We make sure that the interface works.

    # Test with positional arguments.
    updated_state = custom_integrator.step(State([1, 2, 3, 4], []),
                                           ControlInput([1, -1, 2, -3]), 0.1)

    assert np.allclose(updated_state.data, [0.1, 0.5, 0.4, 1.1])
def test_construction(generate_integrator_list):

    integrator_type_list, integrator_class_list = generate_integrator_list
    kinematic_model = DiffdriveModel(1.0, 1.0)

    # Making sure that the right integrator is constructed.
    for integrator_type, integrator_class in zip(integrator_type_list,
                                                 integrator_class_list):
        integrator = integrator_from_type(integrator_type=integrator_type,
                                          kinematic_model=kinematic_model)
        assert isinstance(integrator, integrator_class)

        # Also making sure that the integrator is usable.
        assert np.allclose(
            integrator.step(State(3, 0), ControlInput(2), 0.05).data,
            [0.0, 0.0, 0.0])
def test_construction_with_temporary(generate_integrator_list):
    # Test the function with a temporarily created KinematicModel object.
    # This is to test for any cpp lifetime management weirdness.
    integrator_type_list, integrator_class_list = generate_integrator_list

    # Making sure that the right integrator is constructed.
    for integrator_type, integrator_class in zip(integrator_type_list,
                                                 integrator_class_list):
        integrator = integrator_from_type(integrator_type,
                                          DiffdriveModel(1.0, 1.0))

        assert isinstance(integrator, integrator_class)

        # Also making sure that the integrator is usable.
        assert np.allclose(
            integrator.step(State(3, 0), ControlInput(2), 0.05).data,
            [0.0, 0.0, 0.0])
Exemple #14
0
def test_integration(generate_integrator):

    euler_integrator = generate_integrator

    # We don't check the actual value, as the cpp test covers this. We only
    # check if the function calls the base class implementation.

    # Test with positional arguments.
    updated_state = euler_integrator.integrate(
        robot_state=State([1, 2, 0], []),
        control_input=ControlInput([1, -1]),
        time=10,
        dt=0.01,
    )

    # Making sure that the output state dimensions and configuration is
    # correct.
    assert updated_state.size == 3
    assert updated_state.pose.size == 3
    assert updated_state.is_velocity_empty()
Exemple #15
0
    def compute(self):

        return ControlInput(self.control_input_data)
Exemple #16
0
def test_empty():

    assert not ControlInput(3).is_empty()
    assert ControlInput(0).is_empty()
Exemple #17
0
    def execute(self, playground_state, uid):

        return ControlInput(self.control_input_data)