Exemple #1
0
    def test_classify_image_mean_var_file():
        """Classify an image from files using mean and variance."""
        local = os.path.dirname(os.path.abspath(__file__))

        example.get_sample(local)

        h, j, v, z = [os.path.join(local, f"{b}.fits") for b in "hjvz"]

        Classifier.classify(h=h,
                            j=j,
                            v=v,
                            z=z,
                            out_dir=local,
                            out_type="mean_var")

        outs = dh.get_expected_morpheus_output(out_type="mean_var")

        for k in outs:

            np.testing.assert_allclose(
                outs[k],
                fits.getdata(os.path.join(local, f"{k}.fits")),
                atol=1e-5,
                err_msg=f"{k} failed comparison",
            )

            os.remove(os.path.join(local, f"{k}.fits"))

        for b in "hjvz":
            os.remove(os.path.join(local, f"{b}.fits"))
Exemple #2
0
    def test_classify_mean_var_parallel_cpu():
        """Classify an image in parallel with two cpus."""
        local = os.path.dirname(os.path.abspath(__file__))
        os.mkdir(os.path.join(local, "output"))
        out_dir = os.path.join(local, "output")

        example.get_sample(local)
        h, j, v, z = [os.path.join(local, f"{b}.fits") for b in "hjvz"]

        outs = dh.get_expected_morpheus_output(out_type="mean_var")

        classified = Classifier.classify(
            h=h,
            j=j,
            v=v,
            z=z,
            out_dir=out_dir,
            out_type="mean_var",
            cpus=2,
            parallel_check_interval=0.25,  # check every 15 seconds
        )

        for k in outs:
            np.testing.assert_allclose(outs[k],
                                       classified[k],
                                       atol=1e-5,
                                       err_msg=f"{k} failed comparison")

        shutil.rmtree(out_dir)

        for b in [h, j, v, z]:
            os.remove(b)
Exemple #3
0
    def test_classify_image_rank_vote_in_mem():
        """Classify an image in memory using rank vote."""
        h, j, v, z = example.get_sample()

        expected_outs = dh.get_expected_morpheus_output()

        outs = Classifier.classify(h=h, j=j, v=v, z=z, out_dir=None)

        for k in outs:
            np.testing.assert_allclose(outs[k],
                                       expected_outs[k],
                                       err_msg=f"{k} failed comparison")
Exemple #4
0
    def test_classify_image_mean_var():
        """Classify an image from files using mean and variance."""
        h, j, v, z = example.get_sample()

        outs = Classifier.classify(h=h, j=j, v=v, z=z, out_type="mean_var")

        expected_outs = dh.get_expected_morpheus_output(out_type="mean_var")

        for k in outs:
            np.testing.assert_allclose(outs[k],
                                       expected_outs[k],
                                       atol=1e-5,
                                       err_msg=f"{k} failed comparison")
Exemple #5
0
def main():
    args = _parse_args(sys.argv[1:])

    if args.action == "None":
        Classifier.classify(
            h=args.h,
            j=args.j,
            v=args.v,
            z=args.z,
            batch_size=args.batch_size,
            out_dir=args.out_dir,
            gpus=args.gpus,
            cpus=args.cpus,
        )
    elif args.action == "catalog":
        classified = Classifier.classify(
            h=args.h,
            j=args.j,
            v=args.v,
            z=args.z,
            batch_size=args.batch_size,
            out_dir=args.out_dir,
            gpus=args.gpus,
            cpus=args.cpus,
        )

        segmap = Classifier.segmap_from_classified(classified,
                                                   args.h,
                                                   out_dir=args.out_dir)

        Classifier.catalog_from_classified(
            classified,
            args.h,
            segmap,
            out_file=os.path.join(args.out_dir, "colorized.png"),
        )
    elif args.action == "segmap":
        classified = Classifier.classify(
            h=args.h,
            j=args.j,
            v=args.v,
            z=args.z,
            batch_size=args.batch_size,
            out_dir=args.out_dir,
            gpus=args.gpus,
            cpus=args.cpus,
        )

        Classifier.segmap_from_classified(classified,
                                          args.h,
                                          out_dir=args.out_dir)
    elif args.action == "colorize":
        classified = Classifier.classify(
            h=args.h,
            j=args.j,
            v=args.v,
            z=args.z,
            batch_size=args.batch_size,
            out_dir=args.out_dir,
            gpus=args.gpus,
            cpus=args.cpus,
        )

        Classifier.colorize_classified(classified, out_dir=args.out_dir)
    elif args.action == "all":
        classified = Classifier.classify(
            h=args.h,
            j=args.j,
            v=args.v,
            z=args.z,
            batch_size=args.batch_size,
            out_dir=args.out_dir,
            gpus=args.gpus,
            cpus=args.cpus,
        )

        segmap = Classifier.segmap_from_classified(classified,
                                                   args.h,
                                                   out_dir=args.out_dir)

        Classifier.catalog_from_classified(
            classified,
            args.h,
            segmap,
            out_file=os.path.join(args.out_dir, "colorized.png"),
        )

        Classifier.colorize_classified(classified, out_dir=args.out_dir)
Exemple #6
0
# Copyright 2018 Ryan Hausen
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# ==============================================================================
"""Simple classification example reading from disk."""

from morpheus.classifier import Classifier
from morpheus.data import example

# this saves the sample numpy arrays as FITS files in 'out_dir'
example.get_sample(out_dir=".")
h, j, v, z = [f"{band}.fits" for band in "hjvz"]

morphs = Classifier.classify(h=h, j=j, v=v, z=z)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# ==============================================================================
"""Simple classification example on disk."""

from morpheus.classifier import Classifier
from morpheus.data import example


# this saves the sample numpy arrays as fits files in 'out_dir'
example.get_sample(out_dir=".")
h, j, v, z = [f"{band}.fits" for band in "hjvz"]

Classifier.classify(h=h, j=j, v=v, z=z, out_dir=".")