Exemple #1
0
def main(spec, num_samples, pool):
    checkpoint_dir = os.path.join(CHECKPOINT_ROOT, spec)
    model_type, model_args, dataset_names = spec_util.parse_setup_spec(spec)
    if model_type == 'VAE':
        model = vae.VAE(model_args)
        trainer = vae.Trainer(model, beta=4.)
        trainer.cuda()
        models.load_checkpoint(trainer, checkpoint_dir)
        model.eval()
        sample_latent = model.sample_latent(num_samples)
        sample_imgs = model.dec(sample_latent)
    elif model_type in ['GAN', 'GANmc']:
        model = gan.GAN(model_args)
        trainer = gan.Trainer(model)
        trainer.cuda()
        models.load_checkpoint(trainer, checkpoint_dir)
        model.eval()
        sample_imgs = model(num_samples)
    else:
        raise ValueError(f"Invalid model type: {model_type}")

    print(f"Loaded model {checkpoint_dir}. Measuring samples...")
    sample_imgs_np = sample_imgs.detach().cpu().squeeze().numpy()
    sample_metrics = measure.measure_batch(sample_imgs_np, pool=pool)

    os.makedirs(METRICS_ROOT, exist_ok=True)
    metrics_path = os.path.join(METRICS_ROOT, f"{spec}_metrics.csv")
    sample_metrics.to_csv(metrics_path, index_label='index')
    print(f"Morphometrics saved to {metrics_path}")
Exemple #2
0
def measure_dir(data_dir, pool):
    for name in ['t10k', 'train']:
        in_path = os.path.join(data_dir, name + "-images-idx3-ubyte.gz")
        out_path = os.path.join(data_dir, name + "-morpho.csv")
        print(f"Processing MNIST data file {in_path}...")
        data = io.load_idx(in_path)
        df = measure.measure_batch(data, pool=pool, chunksize=100)
        df.to_csv(out_path, index_label='index')
        print(f"Morphometrics saved to {out_path}")
Exemple #3
0
def measure_dir(data_dir, pool):
    for name in ['t10k', 'train']:
        in_path = os.path.join(data_dir, name + "-images-idx3-ubyte.gz")
        out_path = os.path.join(data_dir, name + "-morpho.csv")
        print(f"Processing MNIST data file {in_path}...")
        data = io.load_idx(in_path)
        df = measure.measure_batch(data, pool=pool, chunksize=100)
        df.to_csv(out_path, index_label='index')
        print(f"Morphometrics saved to {out_path}")
Exemple #4
0
def main(checkpoint_dir, pcorr_dir=None):
    spec = os.path.split(checkpoint_dir)[-1]
    _, latent_dims, dataset_names = spec_util.parse_setup_spec(spec)

    device = torch.device('cuda')
    gan = infogan.InfoGAN(*latent_dims)
    trainer = infogan.Trainer(gan).to(device)
    load_checkpoint(trainer, checkpoint_dir)
    gan.eval()

    dataset_name = SPEC_TO_DATASET['+'.join(dataset_names)]
    data_dirs = [os.path.join(DATA_ROOT, dataset_name)]
    test_metrics, test_images, test_labels, test_which = load_test_data(
        data_dirs)

    print(test_metrics.head())

    idx = np.random.permutation(10000)  #[:1000]
    X = torch.from_numpy(
        test_images[idx]).float().unsqueeze(1).to(device) / 255.

    cols = ['length', 'thickness', 'slant', 'width', 'height']
    test_cols = cols[:]
    test_hrule = None
    if 'swel+frac' in spec:
        add_swel_frac(data_dirs[0], test_metrics)
        test_cols += ['swel', 'frac']
        test_hrule = len(cols)

    if pcorr_dir is None:
        pcorr_dir = checkpoint_dir
    os.makedirs(pcorr_dir, exist_ok=True)

    process(gan, X, test_metrics.loc[idx], test_cols, pcorr_dir, spec, 'test',
            test_hrule)

    X_ = gan(1000).detach()
    with multiprocessing.Pool() as pool:
        sample_metrics = measure.measure_batch(X_.cpu().squeeze().numpy(),
                                               pool=pool)

    sample_hrule = None
    process(gan, X_, sample_metrics, cols, pcorr_dir, spec, 'sample',
            sample_hrule)