def update(frame, population, destinations, pop_size, infection_range=0.01, infection_chance=0.03, speed=0.01, recovery_duration=(200, 500), mortality_chance=0.02, xbounds=[0.02, 0.98], ybounds=[0.02, 0.98], x_plot=[0, 1], y_plot=[0, 1], wander_range=0.05, risk_age=55, critical_age=75, critical_mortality_chance=0.1, risk_increase='quadratic', no_treatment_factor=3, treatment_factor=0.5, healthcare_capacity=250, age_dependent_risk=False, treatment_dependent_risk=False, visualise=False, verbose=False, self_isolate=True, self_isolate_proportion=0.6, isolation_bounds=[0, 0, 0.1, 0.1], traveling_infects=False, lockdown=False, lockdown_percentage=0.1, lockdown_vector=[], plot_style='default'): #add one infection to jumpstart if frame == 50: population[0][6] = 1 population[0][8] = 75 population[0][10] = 1 #define motion vectors if destinations active and not everybody is at destination active_dests = len( population[population[:, 11] != 0]) # look op this only once if active_dests > 0 and len(population[population[:, 12] == 0]) > 0: population = set_destination(population, destinations) population = check_at_destination(population, destinations, wander_factor=1.5) if active_dests > 0 and len(population[population[:, 12] == 1]) > 0: #keep them at destination population = keep_at_destination(population, destinations, wander_factor=1) #update out of bounds #define bounds arrays, excluding those who are marked as having a custom destination if len(population[:, 11] == 0) > 0: _xbounds = np.array([[xbounds[0] + 0.02, xbounds[1] - 0.02]] * len(population[population[:, 11] == 0])) _ybounds = np.array([[ybounds[0] + 0.02, ybounds[1] - 0.02]] * len(population[population[:, 11] == 0])) population[population[:, 11] == 0] = out_of_bounds( population[population[:, 11] == 0], _xbounds, _ybounds) if lockdown: if len(infected_plot) == 0: mx = 0 else: mx = np.max(infected_plot) if len(population[population[:,6] == 1]) >= len(population) * lockdown_percentage or\ mx >= (len(population) * lockdown_percentage): #reduce speed of all members of society population[:, 5] = np.clip(population[:, 5], a_min=None, a_max=0.001) #set speeds of complying people to 0 population[:, 5][lockdown_vector == 0] = 0 else: #update randoms population = update_randoms(population, pop_size, speed=speed) else: #update randoms population = update_randoms(population, pop_size, speed=speed) #for dead ones: set speed and heading to 0 population[:, 3:5][population[:, 6] == 3] = 0 #update positions population = update_positions(population) #find new infections population, destinations = infect(population, pop_size, infection_range, infection_chance, frame, healthcare_capacity, verbose, send_to_location=self_isolate, location_bounds=isolation_bounds, destinations=destinations, location_no=1, location_odds=self_isolate_proportion, traveling_infects=traveling_infects) infected_plot.append(len(population[population[:, 6] == 1])) #recover and die population = recover_or_die(population, frame, recovery_duration, mortality_chance, risk_age, critical_age, critical_mortality_chance, risk_increase, no_treatment_factor, age_dependent_risk, treatment_dependent_risk, treatment_factor, verbose) #send cured back to population population[:, 11][population[:, 6] == 2] = 0 fatalities_plot.append(len(population[population[:, 6] == 3])) if visualise: #construct plot and visualise spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5, 2]) ax1.clear() ax2.clear() ax1.set_xlim(x_plot[0], x_plot[1]) ax1.set_ylim(y_plot[0], y_plot[1]) if self_isolate and isolation_bounds != None: build_hospital(isolation_bounds[0], isolation_bounds[2], isolation_bounds[1], isolation_bounds[3], ax1, addcross=False) #plot population segments healthy = population[population[:, 6] == 0][:, 1:3] ax1.scatter(healthy[:, 0], healthy[:, 1], color='gray', s=2, label='healthy') infected = population[population[:, 6] == 1][:, 1:3] ax1.scatter(infected[:, 0], infected[:, 1], color='red', s=2, label='infected') immune = population[population[:, 6] == 2][:, 1:3] ax1.scatter(immune[:, 0], immune[:, 1], color='green', s=2, label='immune') fatalities = population[population[:, 6] == 3][:, 1:3] ax1.scatter(fatalities[:, 0], fatalities[:, 1], color='black', s=2, label='dead') #add text descriptors ax1.text( x_plot[0], y_plot[1] + ((y_plot[1] - y_plot[0]) / 100), 'timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i' % (frame, len(population), len(healthy), len(infected), len(immune), len(fatalities)), fontsize=6) ax2.set_title('number of infected') ax2.text(0, pop_size * 0.05, 'https://github.com/paulvangentcom/python-corona-simulation', fontsize=6, alpha=0.5) #ax2.set_xlim(0, simulation_steps) ax2.set_ylim(0, pop_size + 200) if treatment_dependent_risk: infected_arr = np.asarray(infected_plot) indices = np.argwhere(infected_arr >= healthcare_capacity) ax2.plot([healthcare_capacity for x in range(len(infected_plot))], color='red', label='healthcare capacity') ax2.plot(infected_plot, color='gray') ax2.plot(fatalities_plot, color='black', label='fatalities') if treatment_dependent_risk: ax2.plot(indices, infected_arr[infected_arr >= healthcare_capacity], color='red') ax2.legend(loc='best', fontsize=6) #plt.savefig('render/%i.png' %frame) return population
def update( frame, population, destinations, pop_size, infection_range=0.01, infection_chance=0.03, recovery_duration=(200, 500), mortality_chance=0.02, xbounds=[0.02, 0.98], ybounds=[0.02, 0.98], wander_range_x=0.05, wander_range_y=0.05, risk_age=55, critical_age=75, critical_mortality_chance=0.1, risk_increase="quadratic", no_treatment_factor=3, treatment_factor=0.5, healthcare_capacity=250, age_dependent_risk=True, treatment_dependent_risk=True, visualise=True, verbose=True, ): # add one infection to jumpstart if frame == 100: # make C # first leg destinations[:, 0][0:100] = 0.05 destinations[:, 1][0:100] = 0.7 population[:, 13][0:100] = 0.01 population[:, 14][0:100] = 0.05 # Top destinations[:, 0][100:200] = 0.1 destinations[:, 1][100:200] = 0.75 population[:, 13][100:200] = 0.05 population[:, 14][100:200] = 0.01 # Bottom destinations[:, 0][200:300] = 0.1 destinations[:, 1][200:300] = 0.65 population[:, 13][200:300] = 0.05 population[:, 14][200:300] = 0.01 # make O # first leg destinations[:, 0][300:400] = 0.2 destinations[:, 1][300:400] = 0.7 population[:, 13][300:400] = 0.01 population[:, 14][300:400] = 0.05 # Top destinations[:, 0][400:500] = 0.25 destinations[:, 1][400:500] = 0.75 population[:, 13][400:500] = 0.05 population[:, 14][400:500] = 0.01 # Bottom destinations[:, 0][500:600] = 0.25 destinations[:, 1][500:600] = 0.65 population[:, 13][500:600] = 0.05 population[:, 14][500:600] = 0.01 # second leg destinations[:, 0][600:700] = 0.3 destinations[:, 1][600:700] = 0.7 population[:, 13][600:700] = 0.01 population[:, 14][600:700] = 0.05 # make V # First leg destinations[:, 0][700:800] = 0.35 destinations[:, 1][700:800] = 0.7 population[:, 13][700:800] = 0.01 population[:, 14][700:800] = 0.05 # Bottom destinations[:, 0][800:900] = 0.4 destinations[:, 1][800:900] = 0.65 population[:, 13][800:900] = 0.05 population[:, 14][800:900] = 0.01 # second leg destinations[:, 0][900:1000] = 0.45 destinations[:, 1][900:1000] = 0.7 population[:, 13][900:1000] = 0.01 population[:, 14][900:1000] = 0.05 # Make I # leg destinations[:, 0][1000:1100] = 0.5 destinations[:, 1][1000:1100] = 0.7 population[:, 13][1000:1100] = 0.01 population[:, 14][1000:1100] = 0.05 # I dot destinations[:, 0][1100:1200] = 0.5 destinations[:, 1][1100:1200] = 0.8 population[:, 13][1100:1200] = 0.01 population[:, 14][1100:1200] = 0.01 # make D # first leg destinations[:, 0][1200:1300] = 0.55 destinations[:, 1][1200:1300] = 0.67 population[:, 13][1200:1300] = 0.01 population[:, 14][1200:1300] = 0.03 # Top destinations[:, 0][1300:1400] = 0.6 destinations[:, 1][1300:1400] = 0.75 population[:, 13][1300:1400] = 0.05 population[:, 14][1300:1400] = 0.01 # Bottom destinations[:, 0][1400:1500] = 0.6 destinations[:, 1][1400:1500] = 0.65 population[:, 13][1400:1500] = 0.05 population[:, 14][1400:1500] = 0.01 # second leg destinations[:, 0][1500:1600] = 0.65 destinations[:, 1][1500:1600] = 0.7 population[:, 13][1500:1600] = 0.01 population[:, 14][1500:1600] = 0.05 # dash destinations[:, 0][1600:1700] = 0.725 destinations[:, 1][1600:1700] = 0.7 population[:, 13][1600:1700] = 0.03 population[:, 14][1600:1700] = 0.01 # Make 1 destinations[:, 0][1700:1800] = 0.8 destinations[:, 1][1700:1800] = 0.7 population[:, 13][1700:1800] = 0.01 population[:, 14][1700:1800] = 0.05 # Make 9 # right leg destinations[:, 0][1800:1900] = 0.91 destinations[:, 1][1800:1900] = 0.675 population[:, 13][1800:1900] = 0.01 population[:, 14][1800:1900] = 0.08 # roof destinations[:, 0][1900:2000] = 0.88 destinations[:, 1][1900:2000] = 0.75 population[:, 13][1900:2000] = 0.035 population[:, 14][1900:2000] = 0.01 # middle destinations[:, 0][2000:2100] = 0.88 destinations[:, 1][2000:2100] = 0.7 population[:, 13][2000:2100] = 0.035 population[:, 14][2000:2100] = 0.01 # left vertical leg destinations[:, 0][2100:2200] = 0.86 destinations[:, 1][2100:2200] = 0.72 population[:, 13][2100:2200] = 0.01 population[:, 14][2100:2200] = 0.01 ################### ##### ROW TWO ##### ################### # S # first leg destinations[:, 0][2200:2300] = 0.115 destinations[:, 1][2200:2300] = 0.5 population[:, 13][2200:2300] = 0.01 population[:, 14][2200:2300] = 0.03 # Top destinations[:, 0][2300:2400] = 0.15 destinations[:, 1][2300:2400] = 0.55 population[:, 13][2300:2400] = 0.05 population[:, 14][2300:2400] = 0.01 # second leg destinations[:, 0][2400:2500] = 0.2 destinations[:, 1][2400:2500] = 0.45 population[:, 13][2400:2500] = 0.01 population[:, 14][2400:2500] = 0.03 # middle destinations[:, 0][2500:2600] = 0.15 destinations[:, 1][2500:2600] = 0.48 population[:, 13][2500:2600] = 0.05 population[:, 14][2500:2600] = 0.01 # bottom destinations[:, 0][2600:2700] = 0.15 destinations[:, 1][2600:2700] = 0.41 population[:, 13][2600:2700] = 0.05 population[:, 14][2600:2700] = 0.01 # Make I # leg destinations[:, 0][2700:2800] = 0.25 destinations[:, 1][2700:2800] = 0.45 population[:, 13][2700:2800] = 0.01 population[:, 14][2700:2800] = 0.05 # I dot destinations[:, 0][2800:2900] = 0.25 destinations[:, 1][2800:2900] = 0.55 population[:, 13][2800:2900] = 0.01 population[:, 14][2800:2900] = 0.01 # M # Top destinations[:, 0][2900:3000] = 0.37 destinations[:, 1][2900:3000] = 0.5 population[:, 13][2900:3000] = 0.07 population[:, 14][2900:3000] = 0.01 # Left leg destinations[:, 0][3000:3100] = 0.31 destinations[:, 1][3000:3100] = 0.45 population[:, 13][3000:3100] = 0.01 population[:, 14][3000:3100] = 0.05 # Middle leg destinations[:, 0][3100:3200] = 0.37 destinations[:, 1][3100:3200] = 0.45 population[:, 13][3100:3200] = 0.01 population[:, 14][3100:3200] = 0.05 # Right leg destinations[:, 0][3200:3300] = 0.43 destinations[:, 1][3200:3300] = 0.45 population[:, 13][3200:3300] = 0.01 population[:, 14][3200:3300] = 0.05 # set all destinations active population[:, 11] = 1 elif frame == 400: population[:, 11] = 0 population[:, 12] = 0 population = update_randoms(population, pop_size, 1, 1) # define motion vectors if destinations active and not everybody is at destination active_dests = len( population[population[:, 11] != 0]) # look op this only once if active_dests > 0 and len(population[population[:, 12] == 0]) > 0: population = set_destination(population, destinations) population = check_at_destination(population, destinations) if active_dests > 0 and len(population[population[:, 12] == 1]) > 0: # keep them at destination population = keep_at_destination(population, destinations, wander_factor=1) # update out of bounds # define bounds arrays _xbounds = np.array([[xbounds[0] + 0.02, xbounds[1] - 0.02]] * len(population)) _ybounds = np.array([[ybounds[0] + 0.02, ybounds[1] - 0.02]] * len(population)) population = out_of_bounds(population, _xbounds, _ybounds) # update randoms population = update_randoms(population, pop_size) # for dead ones: set speed and heading to 0 population[:, 3:5][population[:, 6] == 3] = 0 # update positions population = update_positions(population) # find new infections population = infect( population, pop_size, infection_range, infection_chance, frame, healthcare_capacity, verbose, ) infected_plot.append(len(population[population[:, 6] == 1])) # recover and die population = recover_or_die( population, frame, recovery_duration, mortality_chance, risk_age, critical_age, critical_mortality_chance, risk_increase, no_treatment_factor, age_dependent_risk, treatment_dependent_risk, treatment_factor, verbose, ) fatalities_plot.append(len(population[population[:, 6] == 3])) if visualise: # construct plot and visualise spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5, 2]) ax1.clear() ax2.clear() ax1.set_xlim(xbounds[0], xbounds[1]) ax1.set_ylim(ybounds[0], ybounds[1]) healthy = population[population[:, 6] == 0][:, 1:3] ax1.scatter(healthy[:, 0], healthy[:, 1], color="gray", s=2, label="healthy") infected = population[population[:, 6] == 1][:, 1:3] ax1.scatter(infected[:, 0], infected[:, 1], color="red", s=2, label="infected") immune = population[population[:, 6] == 2][:, 1:3] ax1.scatter(immune[:, 0], immune[:, 1], color="green", s=2, label="immune") fatalities = population[population[:, 6] == 3][:, 1:3] ax1.scatter(fatalities[:, 0], fatalities[:, 1], color="black", s=2, label="fatalities") # add text descriptors ax1.text( xbounds[0], ybounds[1] + ((ybounds[1] - ybounds[0]) / 100), "timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i" % ( frame, len(population), len(healthy), len(infected), len(immune), len(fatalities), ), fontsize=6, ) ax2.set_title("number of infected") ax2.text( 0, pop_size * 0.05, "https://github.com/paulvangentcom/python-corona-simulation", fontsize=6, alpha=0.5, ) ax2.set_xlim(0, simulation_steps) ax2.set_ylim(0, pop_size + 100) ax2.plot(infected_plot, color="gray") ax2.plot(fatalities_plot, color="black", label="fatalities") if treatment_dependent_risk: # ax2.plot([healthcare_capacity for x in range(simulation_steps)], color='red', # label='healthcare capacity') infected_arr = np.asarray(infected_plot) indices = np.argwhere(infected_arr >= healthcare_capacity) ax2.plot(indices, infected_arr[infected_arr >= healthcare_capacity], color="red") # ax2.legend(loc = 1, fontsize = 6) # plt.savefig('render/%i.png' %frame) return population
def update(frame, population, destinations, pop_size, infection_range=0.01, infection_chance=0.03, recovery_duration=(200, 500), mortality_chance=0.02, xbounds=[0.02, 0.98], ybounds=[0.02, 0.98], x_plot=[-0.1, 1], y_plot=[-0.1, 1], wander_range_x=0.05, wander_range_y=0.05, risk_age=55, critical_age=75, critical_mortality_chance=0.1, risk_increase='quadratic', no_treatment_factor=3, treatment_factor=0.5, healthcare_capacity=250, age_dependent_risk=True, treatment_dependent_risk=True, visualise=True, verbose=True, healthcare_workers=50, hospital_bounds=None, healthcare_worker_risk=0): #add one infection to jumpstart if frame == 1: population[healthcare_workers + 1][6] = 1 #define motion vectors if destinations active and not everybody is at destination active_dests = len( population[population[:, 11] != 0]) # look op this only once if active_dests > 0 and len(population[population[:, 12] == 0]) > 0: population = set_destination(population, destinations) population = check_at_destination(population, destinations, wander_factor=1) if active_dests > 0 and len(population[population[:, 12] == 1]) > 0: #keep them at destination population = keep_at_destination(population, destinations, wander_factor=1) #update out of bounds #define bounds arrays if len(population[:, 11] == 0) > 0: _xbounds = np.array([[xbounds[0] + 0.02, xbounds[1] - 0.02]] * len(population[population[:, 11] == 0])) _ybounds = np.array([[ybounds[0] + 0.02, ybounds[1] - 0.02]] * len(population[population[:, 11] == 0])) population[population[:, 11] == 0] = out_of_bounds( population[population[:, 11] == 0], _xbounds, _ybounds) #update randoms population = update_randoms(population, pop_size) #for dead ones: set speed and heading to 0 population[:, 3:5][population[:, 6] == 3] = 0 #update positions population = update_positions(population) #find new infections population, destinations = infect(population, pop_size, infection_range, infection_chance, frame, healthcare_capacity, verbose, send_to_location=True, location_bounds=hospital_bounds, destinations=destinations, location_no=1) #apply risk factor to healthcare worker pool if healthcare_worker_risk != 0: #if risk is not zero, affect workers workers = population[0:healthcare_workers] workers = healthcare_infection_correction(workers, healthcare_worker_risk) population[0:healthcare_workers] = workers infected_plot.append(len(population[population[:, 6] == 1])) #recover and die population = recover_or_die(population, frame, recovery_duration, mortality_chance, risk_age, critical_age, critical_mortality_chance, risk_increase, no_treatment_factor, age_dependent_risk, treatment_dependent_risk, treatment_factor, verbose) #send cured back to population population[:, 11][population[:, 6] == 2] = 0 fatalities_plot.append(len(population[population[:, 6] == 3])) if visualise: #construct plot and visualise spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5, 2]) ax1.clear() ax2.clear() ax1.set_xlim(x_plot[0], x_plot[1]) ax1.set_ylim(y_plot[0], y_plot[1]) if hospital_bounds != None: build_hospital(hospital_bounds[0], hospital_bounds[2], hospital_bounds[1], hospital_bounds[3], ax1) healthy = population[population[:, 6] == 0][:, 1:3] ax1.scatter(healthy[:healthcare_workers][:, 0], healthy[:healthcare_workers][:, 1], marker='P', s=2, color='green', label='healthy') ax1.scatter(healthy[healthcare_workers:][:, 0], healthy[healthcare_workers:][:, 1], color='gray', s=2, label='healthy') infected = population[population[:, 6] == 1][:, 1:3] ax1.scatter(infected[:, 0], infected[:, 1], color='red', s=2, label='infected') immune = population[population[:, 6] == 2][:, 1:3] ax1.scatter(immune[:, 0], immune[:, 1], color='green', s=2, label='immune') fatalities = population[population[:, 6] == 3][:, 1:3] ax1.scatter(fatalities[:, 0], fatalities[:, 1], color='black', s=2, label='dead') #add text descriptors ax1.text( x_plot[0], y_plot[1] + ((y_plot[1] - y_plot[0]) / 8), 'timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i' % (frame, len(population), len(healthy), len(infected), len(immune), len(fatalities)), fontsize=6) ax2.set_title('number of infected') ax2.text(0, pop_size * 0.05, 'https://github.com/paulvangentcom/python-corona-simulation', fontsize=6, alpha=0.5) #ax2.set_xlim(0, simulation_steps) ax2.set_ylim(0, pop_size + 100) if treatment_dependent_risk: infected_arr = np.asarray(infected_plot) indices = np.argwhere(infected_arr >= healthcare_capacity) ax2.plot([healthcare_capacity for x in range(len(infected_plot))], color='red', label='healthcare capacity') ax2.plot(infected_plot, color='gray') ax2.plot(fatalities_plot, color='black', label='fatalities') ax2.legend(loc=1, fontsize=6) if treatment_dependent_risk: ax2.plot(indices, infected_arr[infected_arr >= healthcare_capacity], color='red') #plt.savefig('render/%i.png' %frame) return population