resize = tuple(map( int, args.resize.split('x'))) if args.resize is not None else None crop = tuple(map(int, args.crop.split('x'))) if args.crop is not None else None trim = tuple(map(float, args.trim.split(':'))) if args.trim is not None else None flip = { 'v': 0, 'h': 1, 'hv': -1, 'vh': -1 }[args.flip] if args.flip is not None else None normalize = args.normalize crop_center = CropCenter[args.crop_center] print("Creating directory hierarchy") create_directories(paths) print("Fetching models") fetch_models(paths) if args.no_label: print("Decimating video") labeller = None else: print("Decimating video and labelling with {}".format(args.label_with)) labeller = Labeller.build_from_arguments(args, paths) decimate_and_label_video(paths, labeller, trim=trim, subsample=args.subsample, subsample_offset=args.subsample_offset,
p.add_argument('--frame-offset', help='The frame offset for the two datasets', required=True, type=int) p.add_argument('--target-label-offset', required=True, type=int) p = Labeller.add_arguments(p) return p.parse_args() print("Synthesizing face puppet") args = parse_arguments() paths_base = build_paths(args, directory_prefix='base') paths_out = build_paths(args, directory_prefix='test') create_directories(paths_out) labeller = Labeller.build_from_arguments(args, paths_base) labeller_t = Labeller.build_from_arguments( args, paths_base, label_offset=args.target_label_offset) del labeller.face_labeller.landmarks["right_eyebrow"] del labeller.face_labeller.landmarks["left_eyebrow"] del labeller.face_labeller.landmarks["right_eye"] del labeller.face_labeller.landmarks["left_eye"] del labeller_t.face_labeller.landmarks["mouth"] del labeller_t.face_labeller.landmarks["inner_mouth"] del labeller_t.face_labeller.landmarks["nose"] del labeller_t.face_labeller.landmarks["jaw"] base_image_fns = sorted(os.listdir(paths_base.img_dir))