Exemple #1
0
def get_sort_by_pd(bnd):
    '''
    Parameters
    ----------
    bnd : cell.BinnedData instance
      contains PSTHs (n, ...) and positions (n, ...) from construct_PSTHs
    tasks : array_like
      shape (n, 6), start and target positions of movements

    Returns
    -------
    indices to sort PSTH tasks relative to PD.
    '''
    #    bnd.ensure_flat_inplace()
    tasks = bnd.tasks
    starts, stops = tasks[:,:3], tasks[:,3:]
    dirs = stops - starts
    ndset = bnd.count.shape[2]    
    pds = np.zeros((ndset, 3))    

    for i in xrange(ndset):
        count, pos, time = bnd.get_for_glm(i)
        model = 'kd'
        b, cov = glm_any_model(count, pos, time, model=model)
        bdict = unpack_coefficients(b, model=model)
        pds[i] = bdict['d'] / np.linalg.norm(bdict['d'])
        
    angs = np.arccos(np.dot(pds, dirs.T))
    return np.argsort(angs, axis=-1)
Exemple #2
0
def test_glm_any_model():
    nbin = 10
    align = 'hold'
    lag = 0.1 # s

    ds = datasets['small']
    dc = DataCollection(ds.get_files())
    dc.add_unit(ds.get_units()[0], lag)
    bnd = dc.make_binned(nbin=nbin, align=align)
    ntask, nrep, nunit, nbin = bnd.shape

    # make perfect test counts
    # direction-only model
    tp = radians([20, 10]) # degrees
    b0 = log(10) # log(Hz)
    pd = pol2cart(tp)

    drn = kinematics.get_idir(bnd.pos, axis=2)
    rate = exp(dot(drn, pd) + b0)
    window_size = diff(bnd.bin_edges, axis=2)
    count_mean = rate * window_size
    count = poisson(count_mean)
    count = count[:,:,None]
    bnd.set_PSTHs(count)

    # now fit data for pd
    count, pos, time = bnd.get_for_regress()
    bnom, bse_nom = glm_any_model(count, pos, time, model='kd')
    pd_exp = unitvec(bnom['d'])
    tp_exp = cart2pol(pd_exp)
    
    acceptable_err = 0.05 # about 3 degrees absolute error
    err = abs(tp - tp_exp)
    assert_array_less(err, acceptable_err)