def test__loader(setup_args): full_load, train_samples, val_samples, metadata = load_data(setup_args) x, y = loader(full_load, train_samples[0], metadata, setup_args, type='seq') assert isinstance(x, np.ndarray) assert isinstance(y, np.ndarray) assert x.shape == (4, setup_args.window) assert y.shape == (2, setup_args.window) assert x.min() >= -1 assert x.max() <= 1 assert y.min() >= -1 assert y.max() <= 1 x, y = loader(full_load, train_samples[0], metadata, setup_args, type='flat') assert y.shape == (2, )
def test__init(self, setup_args): dataset, train_samples, _, metadata = load_data(setup_args) dataloader = SeqInSeqOut(dataset, train_samples, metadata, setup_args) assert isinstance(dataloader.samples, list) assert isinstance(dataloader.full_load, dict) assert isinstance(dataloader.metadata, dict)
def test__getitem__(self, setup_args): dataset, train_samples, _, metadata = load_data(setup_args) dataloader = SeqInSeqOut(dataset, train_samples, metadata, setup_args) inp_seq, out_seq = dataloader.__getitem__(0) assert isinstance(inp_seq, np.ndarray) assert isinstance(out_seq, np.ndarray) assert len(inp_seq.shape) == 2 assert inp_seq.shape == (4, 100) assert len(out_seq.shape) == 2 assert out_seq.shape == (2, 100)
def get_dataloaders(args): dataset, train_samples, val_samples, metadata = load_data(args) preloader_class = _get_prelaoder_class(args) print('Train Samples ', len(train_samples)) print('Val Samples ', len(val_samples)) train_preloader = preloader_class(dataset, train_samples, metadata, args) train_loader = DataLoader(train_preloader, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) val_preloader = preloader_class(dataset, val_samples, metadata, args) val_loader = DataLoader(val_preloader, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) return train_loader, val_loader
def test__load_data(setup_args): full_load, train_samples, val_samples, metadata = load_data(setup_args) assert full_load assert isinstance(full_load, dict) for k in full_load.keys(): assert 'train' in k or 'val' in k assert '0001.pkl' in k first_data = full_load[list(full_load.keys())[0]] assert isinstance(first_data, dict) assert 'voltage_d' in first_data assert 'voltage_q' in first_data assert 'current_d' in first_data assert 'current_q' in first_data assert 'statorPuls' in first_data assert 'speed' in first_data assert 'torque' in first_data assert 'time' in first_data assert 'reference_torque_interp' in first_data assert 'reference_speed_interp' in first_data assert 'reference_torque' in first_data assert 'reference_speed' in first_data assert 'torque_time' in first_data assert 'speed_time' in first_data assert isinstance(train_samples, list) assert isinstance(val_samples, list) assert train_samples assert val_samples assert isinstance(train_samples[0], list) assert isinstance(val_samples[0], list) assert len(train_samples[0]) == 4 assert isinstance(metadata, dict)