def __init__(self, path, INPUT_SR, TARGET_SR, WINDOW_LENGTH): self.INPUT_SR = INPUT_SR self.TARGET_SR = TARGET_SR self.WINDOW_LENGTH = WINDOW_LENGTH self.CONFIG = load_config('config_fr.json') self.CONFIG['audio']['sample_rate'] = self.INPUT_SR self.AP_INPUT = AudioProcessor(**self.CONFIG['audio']) self.CONFIG['audio']['sample_rate'] = self.TARGET_SR self.AP_TARGET = AudioProcessor(**self.CONFIG['audio']) self.files = glob.glob(path + '/**/*.wav', recursive=True) #If you change your dataset, delete cache.json if os.path.isfile('./cache.json'): with open('./cache.json', "r") as json_file: self.pre_repertoir = json.load(json_file) else: print("> Computing wave files length...") self.pre_repertoir = [ librosa.get_duration(filename=file) for file in tqdm(self.files) ] with open('./cache.json', mode="w") as json_file: json.dump(self.pre_repertoir, json_file) self.repertoir = [ int(item / WINDOW_LENGTH) for item in self.pre_repertoir ] self.length = self.get_len()
def load_tts(self, tts_checkpoint, tts_config, use_cuda): # pylint: disable=global-statement global symbols, phonemes print(" > Loading TTS model ...") print(" | > model config: ", tts_config) print(" | > checkpoint file: ", tts_checkpoint) self.tts_config = load_config(tts_config) self.use_phonemes = self.tts_config.use_phonemes self.ap = AudioProcessor(**self.tts_config.audio) if 'characters' in self.tts_config.keys(): symbols, phonemes = make_symbols(**self.tts_config.characters) if self.use_phonemes: self.input_size = len(phonemes) else: self.input_size = len(symbols) # TODO: fix this for multi-speaker model - load speakers if self.config.tts_speakers is not None: self.tts_speakers = load_speaker_mapping(self.config.tts_speakers) num_speakers = len(self.tts_speakers) else: num_speakers = 0 self.tts_model = setup_model(self.input_size, num_speakers=num_speakers, c=self.tts_config) # load model state cp = torch.load(tts_checkpoint, map_location=torch.device('cpu')) # load the model self.tts_model.load_state_dict(cp['model']) if use_cuda: self.tts_model.cuda() self.tts_model.eval() self.tts_model.decoder.max_decoder_steps = 3000 if 'r' in cp: self.tts_model.decoder.set_r(cp['r']) print(f" > model reduction factor: {cp['r']}")
def test_scaler(self): scaler_stats_path = os.path.join(get_tests_input_path(), 'scale_stats.npy') conf.audio['stats_path'] = scaler_stats_path conf.audio['preemphasis'] = 0.0 conf.audio['do_trim_silence'] = True conf.audio['signal_norm'] = True ap = AudioProcessor(**conf.audio) mel_mean, mel_std, linear_mean, linear_std, _ = ap.load_stats(scaler_stats_path) ap.setup_scaler(mel_mean, mel_std, linear_mean, linear_std) self.ap.signal_norm = False self.ap.preemphasis = 0.0 # test scaler forward and backward transforms wav = self.ap.load_wav(WAV_FILE) mel_reference = self.ap.melspectrogram(wav) mel_norm = ap.melspectrogram(wav) mel_denorm = ap._denormalize(mel_norm) assert abs(mel_reference - mel_denorm).max() < 1e-4
def __init__(self, *args, **kwargs): super(TestTTSDataset, self).__init__(*args, **kwargs) self.max_loader_iter = 4 self.ap = AudioProcessor(**c.audio)
class TestTTSDataset(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestTTSDataset, self).__init__(*args, **kwargs) self.max_loader_iter = 4 self.ap = AudioProcessor(**c.audio) def _create_dataloader(self, batch_size, r, bgs): items = ljspeech(c.data_path, 'metadata.csv') dataset = TTSDataset.MyDataset( r, c.text_cleaner, compute_linear_spec=True, ap=self.ap, meta_data=items, tp=c.characters if 'characters' in c.keys() else None, batch_group_size=bgs, min_seq_len=c.min_seq_len, max_seq_len=float("inf"), use_phonemes=False) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=dataset.collate_fn, drop_last=True, num_workers=c.num_loader_workers) return dataloader, dataset def test_loader(self): if ok_ljspeech: dataloader, dataset = self._create_dataloader(2, c.r, 0) for i, data in enumerate(dataloader): if i == self.max_loader_iter: break text_input = data[0] text_lengths = data[1] speaker_name = data[2] linear_input = data[3] mel_input = data[4] mel_lengths = data[5] stop_target = data[6] item_idx = data[7] neg_values = text_input[text_input < 0] check_count = len(neg_values) assert check_count == 0, \ " !! Negative values in text_input: {}".format(check_count) # TODO: more assertion here assert isinstance(speaker_name[0], str) assert linear_input.shape[0] == c.batch_size assert linear_input.shape[2] == self.ap.fft_size // 2 + 1 assert mel_input.shape[0] == c.batch_size assert mel_input.shape[2] == c.audio['num_mels'] # check normalization ranges if self.ap.symmetric_norm: assert mel_input.max() <= self.ap.max_norm assert mel_input.min() >= -self.ap.max_norm #pylint: disable=invalid-unary-operand-type assert mel_input.min() < 0 else: assert mel_input.max() <= self.ap.max_norm assert mel_input.min() >= 0 def test_batch_group_shuffle(self): if ok_ljspeech: dataloader, dataset = self._create_dataloader(2, c.r, 16) last_length = 0 frames = dataset.items for i, data in enumerate(dataloader): if i == self.max_loader_iter: break text_input = data[0] text_lengths = data[1] speaker_name = data[2] linear_input = data[3] mel_input = data[4] mel_lengths = data[5] stop_target = data[6] item_idx = data[7] avg_length = mel_lengths.numpy().mean() assert avg_length >= last_length dataloader.dataset.sort_items() is_items_reordered = False for idx, item in enumerate(dataloader.dataset.items): if item != frames[idx]: is_items_reordered = True break assert is_items_reordered def test_padding_and_spec(self): if ok_ljspeech: dataloader, dataset = self._create_dataloader(1, 1, 0) for i, data in enumerate(dataloader): if i == self.max_loader_iter: break text_input = data[0] text_lengths = data[1] speaker_name = data[2] linear_input = data[3] mel_input = data[4] mel_lengths = data[5] stop_target = data[6] item_idx = data[7] # check mel_spec consistency wav = np.asarray(self.ap.load_wav(item_idx[0]), dtype=np.float32) mel = self.ap.melspectrogram(wav).astype('float32') mel = torch.FloatTensor(mel).contiguous() mel_dl = mel_input[0] # NOTE: Below needs to check == 0 but due to an unknown reason # there is a slight difference between two matrices. # TODO: Check this assert cond more in detail. assert abs(mel.T - mel_dl).max() < 1e-5, abs(mel.T - mel_dl).max() # check mel-spec correctness mel_spec = mel_input[0].cpu().numpy() wav = self.ap.inv_melspectrogram(mel_spec.T) self.ap.save_wav(wav, OUTPATH + '/mel_inv_dataloader.wav') shutil.copy(item_idx[0], OUTPATH + '/mel_target_dataloader.wav') # check linear-spec linear_spec = linear_input[0].cpu().numpy() wav = self.ap.inv_spectrogram(linear_spec.T) self.ap.save_wav(wav, OUTPATH + '/linear_inv_dataloader.wav') shutil.copy(item_idx[0], OUTPATH + '/linear_target_dataloader.wav') # check the last time step to be zero padded assert linear_input[0, -1].sum() != 0 assert linear_input[0, -2].sum() != 0 assert mel_input[0, -1].sum() != 0 assert mel_input[0, -2].sum() != 0 assert stop_target[0, -1] == 1 assert stop_target[0, -2] == 0 assert stop_target.sum() == 1 assert len(mel_lengths.shape) == 1 assert mel_lengths[0] == linear_input[0].shape[0] assert mel_lengths[0] == mel_input[0].shape[0] # Test for batch size 2 dataloader, dataset = self._create_dataloader(2, 1, 0) for i, data in enumerate(dataloader): if i == self.max_loader_iter: break text_input = data[0] text_lengths = data[1] speaker_name = data[2] linear_input = data[3] mel_input = data[4] mel_lengths = data[5] stop_target = data[6] item_idx = data[7] if mel_lengths[0] > mel_lengths[1]: idx = 0 else: idx = 1 # check the first item in the batch assert linear_input[idx, -1].sum() != 0 assert linear_input[idx, -2].sum() != 0, linear_input assert mel_input[idx, -1].sum() != 0 assert mel_input[idx, -2].sum() != 0, mel_input assert stop_target[idx, -1] == 1 assert stop_target[idx, -2] == 0 assert stop_target[idx].sum() == 1 assert len(mel_lengths.shape) == 1 assert mel_lengths[idx] == mel_input[idx].shape[0] assert mel_lengths[idx] == linear_input[idx].shape[0] # check the second itme in the batch assert linear_input[1 - idx, -1].sum() == 0 assert mel_input[1 - idx, -1].sum() == 0 assert stop_target[1, mel_lengths[1] - 1] == 1 assert stop_target[1, mel_lengths[1]:].sum() == 0 assert len(mel_lengths.shape) == 1
from torch import nn, optim from mozilla_voice_tts.tts.layers.losses import MSELossMasked from mozilla_voice_tts.tts.models.tacotron2 import Tacotron2 from mozilla_voice_tts.utils.io import load_config from mozilla_voice_tts.utils.audio import AudioProcessor #pylint: disable=unused-variable torch.manual_seed(1) use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") c = load_config(os.path.join(get_tests_input_path(), 'test_config.json')) ap = AudioProcessor(**c.audio) WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") class TacotronTrainTest(unittest.TestCase): def test_train_step(self): # pylint: disable=no-self-use input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 128, (8, )).long().to(device) input_lengths = torch.sort(input_lengths, descending=True)[0] mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) mel_lengths[0] = 30 stop_targets = torch.zeros(8, 30, 1).float().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
class Mel2MelDataset(Dataset): def __init__(self, path, INPUT_SR, TARGET_SR, WINDOW_LENGTH): self.INPUT_SR = INPUT_SR self.TARGET_SR = TARGET_SR self.WINDOW_LENGTH = WINDOW_LENGTH self.CONFIG = load_config('config_fr.json') self.CONFIG['audio']['sample_rate'] = self.INPUT_SR self.AP_INPUT = AudioProcessor(**self.CONFIG['audio']) self.CONFIG['audio']['sample_rate'] = self.TARGET_SR self.AP_TARGET = AudioProcessor(**self.CONFIG['audio']) self.files = glob.glob(path + '/**/*.wav', recursive=True) #If you change your dataset, delete cache.json if os.path.isfile('./cache.json'): with open('./cache.json', "r") as json_file: self.pre_repertoir = json.load(json_file) else: print("> Computing wave files length...") self.pre_repertoir = [ librosa.get_duration(filename=file) for file in tqdm(self.files) ] with open('./cache.json', mode="w") as json_file: json.dump(self.pre_repertoir, json_file) self.repertoir = [ int(item / WINDOW_LENGTH) for item in self.pre_repertoir ] self.length = self.get_len() def __len__(self): return self.length def __getitem__(self, id): ref = self.get_reference(id) input_wav, _ = librosa.load(self.files[ref[0]], offset=self.WINDOW_LENGTH * ref[1], duration=self.WINDOW_LENGTH) target_wav = librosa.resample(input_wav, self.INPUT_SR, self.TARGET_SR) input = torch.tensor(self.AP_INPUT.melspectrogram(input_wav)) target = torch.tensor(self.AP_TARGET.melspectrogram(target_wav)) scale_factor = (target.shape[0] / input.shape[0], target.shape[1] / input.shape[1]) input = torch.nn.functional.interpolate( input.unsqueeze(0).unsqueeze(0), scale_factor=scale_factor, mode='bilinear').reshape(target.shape) return { 'image': self.normalize(input).unsqueeze(0).type(torch.FloatTensor), 'mask': self.normalize(target).unsqueeze(0).type(torch.FloatTensor) } def get_reference(self, id): i = 0 sum = 0 while True: if (sum > id): return (i - 1, id - sum + self.repertoir[i - 1]) else: sum += self.repertoir[i] i += 1 def get_len(self): sum = 0 for num in self.repertoir: sum += num return sum def normalize(self, tensor): return tensor / 8 + 0.5 def denormalize(self, tensor): return tensor - 0.5 * 8
import torch from tests import get_tests_input_path, get_tests_output_path, get_tests_path from mozilla_voice_tts.utils.audio import AudioProcessor from mozilla_voice_tts.utils.io import load_config from mozilla_voice_tts.vocoder.layers.losses import MultiScaleSTFTLoss, STFTLoss, TorchSTFT TESTS_PATH = get_tests_path() OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests") os.makedirs(OUT_PATH, exist_ok=True) WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") C = load_config(os.path.join(get_tests_input_path(), 'test_config.json')) ap = AudioProcessor(**C.audio) def test_torch_stft(): torch_stft = TorchSTFT(ap.fft_size, ap.hop_length, ap.win_length) # librosa stft wav = ap.load_wav(WAV_FILE) M_librosa = abs(ap._stft(wav)) # pylint: disable=protected-access # torch stft wav = torch.from_numpy(wav[None, :]).float() M_torch = torch_stft(wav) # check the difference b/w librosa and torch outputs assert (M_librosa - M_torch[0].data.numpy()).max() < 1e-5 def test_stft_loss():
def main(args): # pylint: disable=redefined-outer-name # pylint: disable=global-variable-undefined global meta_data_train, meta_data_eval, symbols, phonemes # Audio processor ap = AudioProcessor(**c.audio) if 'characters' in c.keys(): symbols, phonemes = make_symbols(**c.characters) # DISTRUBUTED if num_gpus > 1: init_distributed(args.rank, num_gpus, args.group_id, c.distributed["backend"], c.distributed["url"]) num_chars = len(phonemes) if c.use_phonemes else len(symbols) # load data instances meta_data_train, meta_data_eval = load_meta_data(c.datasets) # set the portion of the data used for training if 'train_portion' in c.keys(): meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)] if 'eval_portion' in c.keys(): meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)] # parse speakers if c.use_speaker_embedding: speakers = get_speakers(meta_data_train) if args.restore_path: if c.use_external_speaker_embedding_file: # if restore checkpoint and use External Embedding file prev_out_path = os.path.dirname(args.restore_path) speaker_mapping = load_speaker_mapping(prev_out_path) if not speaker_mapping: print("WARNING: speakers.json was not found in restore_path, trying to use CONFIG.external_speaker_embedding_file") speaker_mapping = load_speaker_mapping(c.external_speaker_embedding_file) if not speaker_mapping: raise RuntimeError("You must copy the file speakers.json to restore_path, or set a valid file in CONFIG.external_speaker_embedding_file") speaker_embedding_dim = len(speaker_mapping[list(speaker_mapping.keys())[0]]['embedding']) elif not c.use_external_speaker_embedding_file: # if restore checkpoint and don't use External Embedding file prev_out_path = os.path.dirname(args.restore_path) speaker_mapping = load_speaker_mapping(prev_out_path) speaker_embedding_dim = None assert all([speaker in speaker_mapping for speaker in speakers]), "As of now you, you cannot " \ "introduce new speakers to " \ "a previously trained model." elif c.use_external_speaker_embedding_file and c.external_speaker_embedding_file: # if start new train using External Embedding file speaker_mapping = load_speaker_mapping(c.external_speaker_embedding_file) speaker_embedding_dim = len(speaker_mapping[list(speaker_mapping.keys())[0]]['embedding']) elif c.use_external_speaker_embedding_file and not c.external_speaker_embedding_file: # if start new train using External Embedding file and don't pass external embedding file raise "use_external_speaker_embedding_file is True, so you need pass a external speaker embedding file, run GE2E-Speaker_Encoder-ExtractSpeakerEmbeddings-by-sample.ipynb or AngularPrototypical-Speaker_Encoder-ExtractSpeakerEmbeddings-by-sample.ipynb notebook in notebooks/ folder" else: # if start new train and don't use External Embedding file speaker_mapping = {name: i for i, name in enumerate(speakers)} speaker_embedding_dim = None save_speaker_mapping(OUT_PATH, speaker_mapping) num_speakers = len(speaker_mapping) print("Training with {} speakers: {}".format(num_speakers, ", ".join(speakers))) else: num_speakers = 0 speaker_embedding_dim = None speaker_mapping = None model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim) params = set_weight_decay(model, c.wd) optimizer = RAdam(params, lr=c.lr, weight_decay=0) if c.stopnet and c.separate_stopnet: optimizer_st = RAdam(model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0) else: optimizer_st = None if c.apex_amp_level == "O1": # pylint: disable=import-outside-toplevel from apex import amp model.cuda() model, optimizer = amp.initialize(model, optimizer, opt_level=c.apex_amp_level) else: amp = None # setup criterion criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4) if args.restore_path: checkpoint = torch.load(args.restore_path, map_location='cpu') try: # TODO: fix optimizer init, model.cuda() needs to be called before # optimizer restore # optimizer.load_state_dict(checkpoint['optimizer']) if c.reinit_layers: raise RuntimeError model.load_state_dict(checkpoint['model']) except KeyError: print(" > Partial model initialization.") model_dict = model.state_dict() model_dict = set_init_dict(model_dict, checkpoint['model'], c) # torch.save(model_dict, os.path.join(OUT_PATH, 'state_dict.pt')) # print("State Dict saved for debug in: ", os.path.join(OUT_PATH, 'state_dict.pt')) model.load_state_dict(model_dict) del model_dict if amp and 'amp' in checkpoint: amp.load_state_dict(checkpoint['amp']) for group in optimizer.param_groups: group['lr'] = c.lr print(" > Model restored from step %d" % checkpoint['step'], flush=True) args.restore_step = checkpoint['step'] else: args.restore_step = 0 if use_cuda: model.cuda() criterion.cuda() # DISTRUBUTED if num_gpus > 1: model = apply_gradient_allreduce(model) if c.noam_schedule: scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1) else: scheduler = None num_params = count_parameters(model) print("\n > Model has {} parameters".format(num_params), flush=True) if 'best_loss' not in locals(): best_loss = float('inf') global_step = args.restore_step for epoch in range(0, c.epochs): c_logger.print_epoch_start(epoch, c.epochs) # set gradual training if c.gradual_training is not None: r, c.batch_size = gradual_training_scheduler(global_step, c) c.r = r model.decoder.set_r(r) if c.bidirectional_decoder: model.decoder_backward.set_r(r) print("\n > Number of output frames:", model.decoder.r) train_avg_loss_dict, global_step = train(model, criterion, optimizer, optimizer_st, scheduler, ap, global_step, epoch, amp, speaker_mapping) eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch, speaker_mapping) c_logger.print_epoch_end(epoch, eval_avg_loss_dict) target_loss = train_avg_loss_dict['avg_postnet_loss'] if c.run_eval: target_loss = eval_avg_loss_dict['avg_postnet_loss'] best_loss = save_best_model(target_loss, best_loss, model, optimizer, global_step, epoch, c.r, OUT_PATH, amp_state_dict=amp.state_dict() if amp else None)
class Synthesizer(object): def __init__(self, config): self.wavernn = None self.vocoder_model = None self.config = config print(config) self.seg = self.get_segmenter("en") self.use_cuda = self.config.use_cuda if self.use_cuda: assert torch.cuda.is_available( ), "CUDA is not availabe on this machine." self.load_tts(self.config.tts_checkpoint, self.config.tts_config, self.config.use_cuda) if self.config.vocoder_checkpoint: self.load_vocoder(self.config.vocoder_checkpoint, self.config.vocoder_config, self.config.use_cuda) if self.config.wavernn_lib_path: self.load_wavernn(self.config.wavernn_lib_path, self.config.wavernn_checkpoint, self.config.wavernn_config, self.config.use_cuda) @staticmethod def get_segmenter(lang): return pysbd.Segmenter(language=lang, clean=True) def load_tts(self, tts_checkpoint, tts_config, use_cuda): # pylint: disable=global-statement global symbols, phonemes print(" > Loading TTS model ...") print(" | > model config: ", tts_config) print(" | > checkpoint file: ", tts_checkpoint) self.tts_config = load_config(tts_config) self.use_phonemes = self.tts_config.use_phonemes self.ap = AudioProcessor(**self.tts_config.audio) if 'characters' in self.tts_config.keys(): symbols, phonemes = make_symbols(**self.tts_config.characters) if self.use_phonemes: self.input_size = len(phonemes) else: self.input_size = len(symbols) # TODO: fix this for multi-speaker model - load speakers if self.config.tts_speakers is not None: self.tts_speakers = load_speaker_mapping(self.config.tts_speakers) num_speakers = len(self.tts_speakers) else: num_speakers = 0 self.tts_model = setup_model(self.input_size, num_speakers=num_speakers, c=self.tts_config) # load model state cp = torch.load(tts_checkpoint, map_location=torch.device('cpu')) # load the model self.tts_model.load_state_dict(cp['model']) if use_cuda: self.tts_model.cuda() self.tts_model.eval() self.tts_model.decoder.max_decoder_steps = 3000 if 'r' in cp: self.tts_model.decoder.set_r(cp['r']) print(f" > model reduction factor: {cp['r']}") def load_vocoder(self, model_file, model_config, use_cuda): self.vocoder_config = load_config(model_config) self.vocoder_model = setup_generator(self.vocoder_config) self.vocoder_model.load_state_dict( torch.load(model_file, map_location="cpu")["model"]) self.vocoder_model.remove_weight_norm() self.vocoder_model.inference_padding = 0 self.vocoder_config = load_config(model_config) if use_cuda: self.vocoder_model.cuda() self.vocoder_model.eval() def load_wavernn(self, lib_path, model_file, model_config, use_cuda): # TODO: set a function in wavernn code base for model setup and call it here. sys.path.append( lib_path) # set this if WaveRNN is not installed globally #pylint: disable=import-outside-toplevel from WaveRNN.models.wavernn import Model print(" > Loading WaveRNN model ...") print(" | > model config: ", model_config) print(" | > model file: ", model_file) self.wavernn_config = load_config(model_config) # This is the default architecture we use for our models. # You might need to update it self.wavernn = Model( rnn_dims=512, fc_dims=512, mode=self.wavernn_config.mode, mulaw=self.wavernn_config.mulaw, pad=self.wavernn_config.pad, use_aux_net=self.wavernn_config.use_aux_net, use_upsample_net=self.wavernn_config.use_upsample_net, upsample_factors=self.wavernn_config.upsample_factors, feat_dims=80, compute_dims=128, res_out_dims=128, res_blocks=10, hop_length=self.ap.hop_length, sample_rate=self.ap.sample_rate, ).cuda() check = torch.load(model_file, map_location="cpu") self.wavernn.load_state_dict(check['model']) if use_cuda: self.wavernn.cuda() self.wavernn.eval() def save_wav(self, wav, path): # wav *= 32767 / max(1e-8, np.max(np.abs(wav))) wav = np.array(wav) self.ap.save_wav(wav, path) def split_into_sentences(self, text): return self.seg.segment(text) def tts(self, text, speaker_id=None): start_time = time.time() wavs = [] sens = self.split_into_sentences(text) print(sens) speaker_id = id_to_torch(speaker_id) if speaker_id is not None and self.use_cuda: speaker_id = speaker_id.cuda() for sen in sens: # preprocess the given text inputs = text_to_seqvec(sen, self.tts_config) inputs = numpy_to_torch(inputs, torch.long, cuda=self.use_cuda) inputs = inputs.unsqueeze(0) # synthesize voice _, postnet_output, _, _ = run_model_torch(self.tts_model, inputs, self.tts_config, False, speaker_id, None) if self.vocoder_model: # use native vocoder model vocoder_input = postnet_output[0].transpose(0, 1).unsqueeze(0) wav = self.vocoder_model.inference(vocoder_input) if self.use_cuda: wav = wav.cpu().numpy() else: wav = wav.numpy() wav = wav.flatten() elif self.wavernn: # use 3rd paty wavernn vocoder_input = None if self.tts_config.model == "Tacotron": vocoder_input = torch.FloatTensor( self.ap.out_linear_to_mel( linear_spec=postnet_output.T).T).T.unsqueeze(0) else: vocoder_input = postnet_output[0].transpose(0, 1).unsqueeze(0) if self.use_cuda: vocoder_input.cuda() wav = self.wavernn.generate( vocoder_input, batched=self.config.is_wavernn_batched, target=11000, overlap=550) else: # use GL if self.use_cuda: postnet_output = postnet_output[0].cpu() else: postnet_output = postnet_output[0] postnet_output = postnet_output.numpy() wav = inv_spectrogram(postnet_output, self.ap, self.tts_config) # trim silence wav = trim_silence(wav, self.ap) wavs += list(wav) wavs += [0] * 10000 out = io.BytesIO() self.save_wav(wavs, out) # compute stats process_time = time.time() - start_time audio_time = len(wavs) / self.tts_config.audio['sample_rate'] print(f" > Processing time: {process_time}") print(f" > Real-time factor: {process_time / audio_time}") return out
def gan_dataset_case(batch_size, seq_len, hop_len, conv_pad, return_segments, use_noise_augment, use_cache, num_workers): ''' run dataloader with given parameters and check conditions ''' ap = AudioProcessor(**C.audio) _, train_items = load_wav_data(test_data_path, 10) dataset = GANDataset(ap, train_items, seq_len=seq_len, hop_len=hop_len, pad_short=2000, conv_pad=conv_pad, return_segments=return_segments, use_noise_augment=use_noise_augment, use_cache=use_cache) loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) max_iter = 10 count_iter = 0 # return random segments or return the whole audio if return_segments: for item1, _ in loader: feat1, wav1 = item1 # feat2, wav2 = item2 expected_feat_shape = (batch_size, ap.num_mels, seq_len // hop_len + conv_pad * 2) # check shapes assert np.all(feat1.shape == expected_feat_shape ), f" [!] {feat1.shape} vs {expected_feat_shape}" assert (feat1.shape[2] - conv_pad * 2) * hop_len == wav1.shape[2] # check feature vs audio match if not use_noise_augment: for idx in range(batch_size): audio = wav1[idx].squeeze() feat = feat1[idx] mel = ap.melspectrogram(audio) # the first 2 and the last 2 frames are skipped due to the padding # differences in stft assert (feat - mel[:, :feat1.shape[-1]])[:, 2:-2].sum( ) <= 0, f' [!] {(feat - mel[:, :feat1.shape[-1]])[:, 2:-2].sum()}' count_iter += 1 # if count_iter == max_iter: # break else: for item in loader: feat, wav = item expected_feat_shape = (batch_size, ap.num_mels, (wav.shape[-1] // hop_len) + (conv_pad * 2)) assert np.all(feat.shape == expected_feat_shape ), f" [!] {feat.shape} vs {expected_feat_shape}" assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2] count_iter += 1 if count_iter == max_iter: break
def __init__(self, *args, **kwargs): super(TestAudio, self).__init__(*args, **kwargs) self.ap = AudioProcessor(**conf.audio)
class TestAudio(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestAudio, self).__init__(*args, **kwargs) self.ap = AudioProcessor(**conf.audio) def test_audio_synthesis(self): """ 1. load wav 2. set normalization parameters 3. extract mel-spec 4. invert to wav and save the output """ print(" > Sanity check for the process wav -> mel -> wav") def _test(max_norm, signal_norm, symmetric_norm, clip_norm): self.ap.max_norm = max_norm self.ap.signal_norm = signal_norm self.ap.symmetric_norm = symmetric_norm self.ap.clip_norm = clip_norm wav = self.ap.load_wav(WAV_FILE) mel = self.ap.melspectrogram(wav) wav_ = self.ap.inv_melspectrogram(mel) file_name = "/audio_test-melspec_max_norm_{}-signal_norm_{}-symmetric_{}-clip_norm_{}.wav"\ .format(max_norm, signal_norm, symmetric_norm, clip_norm) print(" | > Creating wav file at : ", file_name) self.ap.save_wav(wav_, OUT_PATH + file_name) # maxnorm = 1.0 _test(1., False, False, False) _test(1., True, False, False) _test(1., True, True, False) _test(1., True, False, True) _test(1., True, True, True) # maxnorm = 4.0 _test(4., False, False, False) _test(4., True, False, False) _test(4., True, True, False) _test(4., True, False, True) _test(4., True, True, True) def test_normalize(self): """Check normalization and denormalization for range values and consistency """ print(" > Testing normalization and denormalization.") wav = self.ap.load_wav(WAV_FILE) wav = self.ap.sound_norm(wav) # normalize audio to get abetter normalization range below. self.ap.signal_norm = False x = self.ap.melspectrogram(wav) x_old = x self.ap.signal_norm = True self.ap.symmetric_norm = False self.ap.clip_norm = False self.ap.max_norm = 4.0 x_norm = self.ap._normalize(x) print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") assert (x_old - x).sum() == 0 # check value range assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max() assert x_norm.min() >= 0 - 1, x_norm.min() # check denorm. x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3, (x - x_).mean() self.ap.signal_norm = True self.ap.symmetric_norm = False self.ap.clip_norm = True self.ap.max_norm = 4.0 x_norm = self.ap._normalize(x) print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") assert (x_old - x).sum() == 0 # check value range assert x_norm.max() <= self.ap.max_norm, x_norm.max() assert x_norm.min() >= 0, x_norm.min() # check denorm. x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3, (x - x_).mean() self.ap.signal_norm = True self.ap.symmetric_norm = True self.ap.clip_norm = False self.ap.max_norm = 4.0 x_norm = self.ap._normalize(x) print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") assert (x_old - x).sum() == 0 # check value range assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max() assert x_norm.min() >= -self.ap.max_norm - 2, x_norm.min() #pylint: disable=invalid-unary-operand-type assert x_norm.min() <= 0, x_norm.min() # check denorm. x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3, (x - x_).mean() self.ap.signal_norm = True self.ap.symmetric_norm = True self.ap.clip_norm = True self.ap.max_norm = 4.0 x_norm = self.ap._normalize(x) print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") assert (x_old - x).sum() == 0 # check value range assert x_norm.max() <= self.ap.max_norm, x_norm.max() assert x_norm.min() >= -self.ap.max_norm, x_norm.min() #pylint: disable=invalid-unary-operand-type assert x_norm.min() <= 0, x_norm.min() # check denorm. x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3, (x - x_).mean() self.ap.signal_norm = True self.ap.symmetric_norm = False self.ap.max_norm = 1.0 x_norm = self.ap._normalize(x) print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") assert (x_old - x).sum() == 0 assert x_norm.max() <= self.ap.max_norm, x_norm.max() assert x_norm.min() >= 0, x_norm.min() x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3 self.ap.signal_norm = True self.ap.symmetric_norm = True self.ap.max_norm = 1.0 x_norm = self.ap._normalize(x) print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") assert (x_old - x).sum() == 0 assert x_norm.max() <= self.ap.max_norm, x_norm.max() assert x_norm.min() >= -self.ap.max_norm, x_norm.min() #pylint: disable=invalid-unary-operand-type assert x_norm.min() < 0, x_norm.min() x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3 def test_scaler(self): scaler_stats_path = os.path.join(get_tests_input_path(), 'scale_stats.npy') conf.audio['stats_path'] = scaler_stats_path conf.audio['preemphasis'] = 0.0 conf.audio['do_trim_silence'] = True conf.audio['signal_norm'] = True ap = AudioProcessor(**conf.audio) mel_mean, mel_std, linear_mean, linear_std, _ = ap.load_stats(scaler_stats_path) ap.setup_scaler(mel_mean, mel_std, linear_mean, linear_std) self.ap.signal_norm = False self.ap.preemphasis = 0.0 # test scaler forward and backward transforms wav = self.ap.load_wav(WAV_FILE) mel_reference = self.ap.melspectrogram(wav) mel_norm = ap.melspectrogram(wav) mel_denorm = ap._denormalize(mel_norm) assert abs(mel_reference - mel_denorm).max() < 1e-4
type=str, help="if CONFIG.use_external_speaker_embedding_file is true, name of speaker embedding reference file present in speakers.json, else target speaker_fileid if the model is multi-speaker.", default=None) parser.add_argument( '--gst_style', help="Wav path file for GST stylereference.", default=None) args = parser.parse_args() # load the config C = load_config(args.config_path) C.forward_attn_mask = True # load the audio processor ap = AudioProcessor(**C.audio) # if the vocabulary was passed, replace the default if 'characters' in C.keys(): symbols, phonemes = make_symbols(**C.characters) speaker_embedding = None speaker_embedding_dim = None num_speakers = 0 # load speakers if args.speakers_json != '': speaker_mapping = json.load(open(args.speakers_json, 'r')) num_speakers = len(speaker_mapping) if C.use_external_speaker_embedding_file: if args.speaker_fileid is not None:
def main(args): # pylint: disable=redefined-outer-name # pylint: disable=global-variable-undefined global train_data, eval_data print(f" > Loading wavs from: {c.data_path}") if c.feature_path is not None: print(f" > Loading features from: {c.feature_path}") eval_data, train_data = load_wav_feat_data(c.data_path, c.feature_path, c.eval_split_size) else: eval_data, train_data = load_wav_data(c.data_path, c.eval_split_size) # setup audio processor ap = AudioProcessor(**c.audio) # DISTRUBUTED # if num_gpus > 1: # init_distributed(args.rank, num_gpus, args.group_id, # c.distributed["backend"], c.distributed["url"]) # setup models model_gen = setup_generator(c) model_disc = setup_discriminator(c) # setup optimizers optimizer_gen = RAdam(model_gen.parameters(), lr=c.lr_gen, weight_decay=0) optimizer_disc = RAdam(model_disc.parameters(), lr=c.lr_disc, weight_decay=0) # schedulers scheduler_gen = None scheduler_disc = None if 'lr_scheduler_gen' in c: scheduler_gen = getattr(torch.optim.lr_scheduler, c.lr_scheduler_gen) scheduler_gen = scheduler_gen(optimizer_gen, **c.lr_scheduler_gen_params) if 'lr_scheduler_disc' in c: scheduler_disc = getattr(torch.optim.lr_scheduler, c.lr_scheduler_disc) scheduler_disc = scheduler_disc(optimizer_disc, **c.lr_scheduler_disc_params) # setup criterion criterion_gen = GeneratorLoss(c) criterion_disc = DiscriminatorLoss(c) if args.restore_path: checkpoint = torch.load(args.restore_path, map_location='cpu') try: print(" > Restoring Generator Model...") model_gen.load_state_dict(checkpoint['model']) print(" > Restoring Generator Optimizer...") optimizer_gen.load_state_dict(checkpoint['optimizer']) print(" > Restoring Discriminator Model...") model_disc.load_state_dict(checkpoint['model_disc']) print(" > Restoring Discriminator Optimizer...") optimizer_disc.load_state_dict(checkpoint['optimizer_disc']) if 'scheduler' in checkpoint: print(" > Restoring Generator LR Scheduler...") scheduler_gen.load_state_dict(checkpoint['scheduler']) # NOTE: Not sure if necessary scheduler_gen.optimizer = optimizer_gen if 'scheduler_disc' in checkpoint: print(" > Restoring Discriminator LR Scheduler...") scheduler_disc.load_state_dict(checkpoint['scheduler_disc']) scheduler_disc.optimizer = optimizer_disc except RuntimeError: # retore only matching layers. print(" > Partial model initialization...") model_dict = model_gen.state_dict() model_dict = set_init_dict(model_dict, checkpoint['model'], c) model_gen.load_state_dict(model_dict) model_dict = model_disc.state_dict() model_dict = set_init_dict(model_dict, checkpoint['model_disc'], c) model_disc.load_state_dict(model_dict) del model_dict # reset lr if not countinuining training. for group in optimizer_gen.param_groups: group['lr'] = c.lr_gen for group in optimizer_disc.param_groups: group['lr'] = c.lr_disc print(" > Model restored from step %d" % checkpoint['step'], flush=True) args.restore_step = checkpoint['step'] else: args.restore_step = 0 if use_cuda: model_gen.cuda() criterion_gen.cuda() model_disc.cuda() criterion_disc.cuda() # DISTRUBUTED # if num_gpus > 1: # model = apply_gradient_allreduce(model) num_params = count_parameters(model_gen) print(" > Generator has {} parameters".format(num_params), flush=True) num_params = count_parameters(model_disc) print(" > Discriminator has {} parameters".format(num_params), flush=True) if 'best_loss' not in locals(): best_loss = float('inf') global_step = args.restore_step for epoch in range(0, c.epochs): c_logger.print_epoch_start(epoch, c.epochs) _, global_step = train(model_gen, criterion_gen, optimizer_gen, model_disc, criterion_disc, optimizer_disc, scheduler_gen, scheduler_disc, ap, global_step, epoch) eval_avg_loss_dict = evaluate(model_gen, criterion_gen, model_disc, criterion_disc, ap, global_step, epoch) c_logger.print_epoch_end(epoch, eval_avg_loss_dict) target_loss = eval_avg_loss_dict[c.target_loss] best_loss = save_best_model(target_loss, best_loss, model_gen, optimizer_gen, scheduler_gen, model_disc, optimizer_disc, scheduler_disc, global_step, epoch, OUT_PATH, model_losses=eval_avg_loss_dict)
def main(): """Run preprocessing process.""" parser = argparse.ArgumentParser( description="Compute mean and variance of spectrogtram features.") parser.add_argument( "--config_path", type=str, required=True, help="TTS config file path to define audio processin parameters.") parser.add_argument("--out_path", default=None, type=str, help="directory to save the output file.") args = parser.parse_args() # load config CONFIG = load_config(args.config_path) CONFIG.audio['signal_norm'] = False # do not apply earlier normalization CONFIG.audio['stats_path'] = None # discard pre-defined stats # load audio processor ap = AudioProcessor(**CONFIG.audio) # load the meta data of target dataset dataset_items = load_meta_data(CONFIG.datasets)[0] # take only train data print(f" > There are {len(dataset_items)} files.") mel_sum = 0 mel_square_sum = 0 linear_sum = 0 linear_square_sum = 0 N = 0 for item in tqdm(dataset_items): # compute features wav = ap.load_wav(item[1]) linear = ap.spectrogram(wav) mel = ap.melspectrogram(wav) # compute stats N += mel.shape[1] mel_sum += mel.sum(1) linear_sum += linear.sum(1) mel_square_sum += (mel**2).sum(axis=1) linear_square_sum += (linear**2).sum(axis=1) mel_mean = mel_sum / N mel_scale = np.sqrt(mel_square_sum / N - mel_mean**2) linear_mean = linear_sum / N linear_scale = np.sqrt(linear_square_sum / N - linear_mean**2) output_file_path = os.path.join(args.out_path, "scale_stats.npy") stats = {} stats['mel_mean'] = mel_mean stats['mel_std'] = mel_scale stats['linear_mean'] = linear_mean stats['linear_std'] = linear_scale print(f' > Avg mel spec mean: {mel_mean.mean()}') print(f' > Avg mel spec scale: {mel_scale.mean()}') print(f' > Avg linear spec mean: {linear_mean.mean()}') print(f' > Avg lienar spec scale: {linear_scale.mean()}') # set default config values for mean-var scaling CONFIG.audio['stats_path'] = output_file_path CONFIG.audio['signal_norm'] = True # remove redundant values del CONFIG.audio['max_norm'] del CONFIG.audio['min_level_db'] del CONFIG.audio['symmetric_norm'] del CONFIG.audio['clip_norm'] stats['audio_config'] = CONFIG.audio np.save(output_file_path, stats, allow_pickle=True) print(f' > scale_stats.npy is saved to {output_file_path}')
def main(args): # pylint: disable=redefined-outer-name # pylint: disable=global-variable-undefined global meta_data_train global meta_data_eval ap = AudioProcessor(**c.audio) model = SpeakerEncoder(input_dim=c.model['input_dim'], proj_dim=c.model['proj_dim'], lstm_dim=c.model['lstm_dim'], num_lstm_layers=c.model['num_lstm_layers']) optimizer = RAdam(model.parameters(), lr=c.lr) if c.loss == "ge2e": criterion = GE2ELoss(loss_method='softmax') elif c.loss == "angleproto": criterion = AngleProtoLoss() else: raise Exception("The %s not is a loss supported" % c.loss) if args.restore_path: checkpoint = torch.load(args.restore_path) try: # TODO: fix optimizer init, model.cuda() needs to be called before # optimizer restore # optimizer.load_state_dict(checkpoint['optimizer']) if c.reinit_layers: raise RuntimeError model.load_state_dict(checkpoint['model']) except KeyError: print(" > Partial model initialization.") model_dict = model.state_dict() model_dict = set_init_dict(model_dict, checkpoint, c) model.load_state_dict(model_dict) del model_dict for group in optimizer.param_groups: group['lr'] = c.lr print(" > Model restored from step %d" % checkpoint['step'], flush=True) args.restore_step = checkpoint['step'] else: args.restore_step = 0 if use_cuda: model = model.cuda() criterion.cuda() if c.lr_decay: scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1) else: scheduler = None num_params = count_parameters(model) print("\n > Model has {} parameters".format(num_params), flush=True) # pylint: disable=redefined-outer-name meta_data_train, meta_data_eval = load_meta_data(c.datasets) global_step = args.restore_step _, global_step = train(model, criterion, optimizer, scheduler, ap, global_step)