def train_xor(self, learning_rate=0.1): """Trains XOR with a neural net""" X = np.array([[0.0, 0.0], [0, 1], [1, 0], [1, 1]]) y = np.array([0, 1, 1, 0]) net = PyBrainNN(learning_rate=learning_rate, maxiterations=10000, lam=0.0, args=(2, 3, 1), kwargs={ 'fast': True, 'bias': True }) net.fit(X, y) return net, X, y
def test_load_save_model(self): import tempfile net, X, y = self.train_xor() # save the model tfile = tempfile.TemporaryFile() net.save_model(tfile) # load in the model tfile.seek(0) model = json.load(tfile) netloaded = PyBrainNN.load_model(model) self.assertTrue(np.allclose(net.predict(X), netloaded.predict(X)))