def wrap_mpi_split(mpi_comm, number_of_subcomm): from mpi import mpi_comm_rank, mpi_comm_size, mpi_comm_split from air import mpi_env_type main_size = mpi_comm_size(mpi_comm) if number_of_subcomm > main_size: raise RuntimeError("number_of_subcomm > main_size") me = mpi_env_type() me.main_comm = mpi_comm me.main_rank = mpi_comm_rank(mpi_comm) me.subcomm_id = me.main_rank % number_of_subcomm me.sub_rank = me.main_rank / number_of_subcomm me.sub_comm = mpi_comm_split(mpi_comm, me.subcomm_id, me.sub_rank) me.subcomms_count = number_of_subcomm me.subcomms_roots = range(number_of_subcomm) return me
# import numpy from numpy import * import mpi import sys import math #print "before",len(sys.argv),sys.argv sys.argv = mpi.mpi_init(len(sys.argv), sys.argv) #print "after ",len(sys.argv),sys.argv myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) numnodes = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) print "hello from ", myid, " of ", numnodes color = myid % 2 new_comm = mpi.mpi_comm_split(mpi.MPI_COMM_WORLD, color, myid) new_id = mpi.mpi_comm_rank(new_comm) new_nodes = mpi.mpi_comm_size(new_comm) zero_one = -1 if new_id == 0: zero_one = color zero_one = mpi.mpi_bcast(zero_one, 1, mpi.MPI_INT, 0, new_comm) if zero_one == 0: print myid, " part of even processor communicator ", new_id if zero_one == 1: print myid, " part of odd processor communicator ", new_id print "old_id=", myid, "new_id=", new_id
def calculate_volumes_after_rotation_and_save_them(ali3d_options, rviper_iter, masterdir, bdb_stack_location, mpi_rank, mpi_size, no_of_viper_runs_analyzed_together, no_of_viper_runs_analyzed_together_from_user_options, mpi_comm = -1): # This function takes into account the case in which there are more processors than images if mpi_comm == -1: mpi_comm = MPI_COMM_WORLD # some arguments are for debugging purposes mainoutputdir = masterdir + DIR_DELIM + NAME_OF_MAIN_DIR + ("%03d" + DIR_DELIM) %(rviper_iter) # list_of_projection_indices_used_for_outlier_elimination = map(int, read_text_file(mainoutputdir + DIR_DELIM + "list_of_viper_runs_included_in_outlier_elimination.txt")) import json; f = open(mainoutputdir + "list_of_viper_runs_included_in_outlier_elimination.json", 'r') list_of_independent_viper_run_indices_used_for_outlier_elimination = json.load(f); f.close() if len(list_of_independent_viper_run_indices_used_for_outlier_elimination)==0: print "Error: len(list_of_independent_viper_run_indices_used_for_outlier_elimination)==0" mpi_finalize() sys.exit() # if this data analysis step was already performed in the past then return # for future changes make sure that the file checked is the last one to be processed !!! # if(os.path.exists(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(no_of_viper_runs_analyzed_together - 1) + DIR_DELIM + "rotated_volume.hdf")): # check_last_run = max(get_latest_directory_increment_value(mainoutputdir, NAME_OF_RUN_DIR, start_value=0), no_of_viper_runs_analyzed_together_from_user_options) # if(os.path.exists(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(check_last_run) + DIR_DELIM + "rotated_volume.hdf")): # return # if this data analysis step was already performed in the past then return for check_run in list_of_independent_viper_run_indices_used_for_outlier_elimination: if not (os.path.exists(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(check_run) + DIR_DELIM + "rotated_volume.hdf")): break else: return partstack = [] # for i1 in range(0,no_of_viper_runs_analyzed_together): for i1 in list_of_independent_viper_run_indices_used_for_outlier_elimination: partstack.append(mainoutputdir + NAME_OF_RUN_DIR + "%03d"%(i1) + DIR_DELIM + "rotated_reduced_params.txt") partids_file_name = mainoutputdir + "this_iteration_index_keep_images.txt" lpartids = map(int, read_text_file(partids_file_name) ) n_projs = len(lpartids) if (mpi_size > n_projs): # if there are more processors than images working = int(not(mpi_rank < n_projs)) mpi_subcomm = mpi_comm_split(mpi_comm, working, mpi_rank - working*n_projs) mpi_subsize = mpi_comm_size(mpi_subcomm) mpi_subrank = mpi_comm_rank(mpi_subcomm) if (mpi_rank < n_projs): # for i in xrange(no_of_viper_runs_analyzed_together): for idx, i in enumerate(list_of_independent_viper_run_indices_used_for_outlier_elimination): projdata = getindexdata(bdb_stack_location + "_%03d"%(rviper_iter - 1), partids_file_name, partstack[idx], mpi_rank, mpi_subsize) vol = do_volume(projdata, ali3d_options, 0, mpi_comm = mpi_subcomm) del projdata if( mpi_rank == 0): vol.write_image(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(i) + DIR_DELIM + "rotated_volume.hdf") line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " => " print line + "Generated rec_ref_volume_run #%01d \n"%i del vol mpi_barrier(mpi_comm) else: for idx, i in enumerate(list_of_independent_viper_run_indices_used_for_outlier_elimination): projdata = getindexdata(bdb_stack_location + "_%03d"%(rviper_iter - 1), partids_file_name, partstack[idx], mpi_rank, mpi_size) vol = do_volume(projdata, ali3d_options, 0, mpi_comm = mpi_comm) del projdata if( mpi_rank == 0): vol.write_image(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(i) + DIR_DELIM + "rotated_volume.hdf") line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " => " print line + "Generated rec_ref_volume_run #%01d"%i del vol if( mpi_rank == 0): # Align all rotated volumes, calculate their average and save as an overall result from utilities import get_params3D, set_params3D, get_im, model_circle from statistics import ave_var from applications import ali_vol # vls = [None]*no_of_viper_runs_analyzed_together vls = [None]*len(list_of_independent_viper_run_indices_used_for_outlier_elimination) # for i in xrange(no_of_viper_runs_analyzed_together): for idx, i in enumerate(list_of_independent_viper_run_indices_used_for_outlier_elimination): vls[idx] = get_im(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(i) + DIR_DELIM + "rotated_volume.hdf") set_params3D(vls[idx],[0.,0.,0.,0.,0.,0.,0,1.0]) asa,sas = ave_var(vls) # do the alignment nx = asa.get_xsize() radius = nx/2 - .5 st = Util.infomask(asa*asa, model_circle(radius,nx,nx,nx), True) goal = st[0] going = True while(going): set_params3D(asa,[0.,0.,0.,0.,0.,0.,0,1.0]) # for i in xrange(no_of_viper_runs_analyzed_together): for idx, i in enumerate(list_of_independent_viper_run_indices_used_for_outlier_elimination): o = ali_vol(vls[idx],asa,7.0,5.,radius) # range of angles and shifts, maybe should be adjusted p = get_params3D(o) del o set_params3D(vls[idx],p) asa,sas = ave_var(vls) st = Util.infomask(asa*asa, model_circle(radius,nx,nx,nx), True) if(st[0] > goal): goal = st[0] else: going = False # over and out asa.write_image(mainoutputdir + DIR_DELIM + "average_volume.hdf") sas.write_image(mainoutputdir + DIR_DELIM + "variance_volume.hdf") return
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = sp_utilities.compose_transform2( 0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = sp_utilities.compose_transform2( 0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0) return alpha, sx, sy, m progname = optparse.os.path.basename(sys.argv[0]) usage = ( progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" ) parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option("--output_dir", type="string", default="./", help="Output directory") parser.add_option( "--ave2D", type="string", default=False, help="Write to the disk a stack of 2D averages", ) parser.add_option( "--var2D", type="string", default=False, help="Write to the disk a stack of 2D variances", ) parser.add_option( "--ave3D", type="string", default=False, help="Write to the disk reconstructed 3D average", ) parser.add_option( "--var3D", type="string", default=False, help="Compute 3D variability (time consuming!)", ) parser.add_option( "--img_per_grp", type="int", default=100, help="Number of neighbouring projections.(Default is 100)", ) parser.add_option( "--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)", ) # parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option( "--npad", type="int", default=2, help= "Number of time to pad the original images.(Default is 2 times padding)", ) parser.add_option("--sym", type="string", default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option( "--fl", type="float", default=0.0, help= "Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)", ) parser.add_option( "--aa", type="float", default=0.02, help= "Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)", ) parser.add_option( "--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)", ) # parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") # parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) # parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) # parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) # parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option( "--VAR", action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)", ) parser.add_option( "--decimate", type="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)", ) parser.add_option( "--window", type="int", default=0, help= "Target image size relative to original image size. (Default value is zero.)", ) # parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") # parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option( "--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)", ) parser.add_option("--overhead", type="float", default=0.5, help="python overhead per CPU.") (options, args) = parser.parse_args() ##### # from mpi import * # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 # Set up global variables related to bdb cache if sp_global_def.CACHE_DISABLE: sp_utilities.disable_bdb_cache() # Set up global variables related to ERROR function sp_global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in optparse.os.environ if RUNNING_UNDER_MPI: sp_global_def.MPI = True if options.output_dir == "./": current_output_dir = optparse.os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize: if mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) > 1: sp_global_def.ERROR( "Cannot use more than one CPU for symmetry preparation") if not optparse.os.path.exists(current_output_dir): optparse.os.makedirs(current_output_dir) sp_global_def.write_command(current_output_dir) if optparse.os.path.exists( optparse.os.path.join(current_output_dir, "log.txt")): optparse.os.remove( optparse.os.path.join(current_output_dir, "log.txt")) log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = optparse.os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if sym == "c1": sp_global_def.ERROR( "There is no need to symmetrize stack for C1 symmetry") line = "" for a in sys.argv: line += " " + a log_main.add(line) if instack[:4] != "bdb:": # if output_dir =="./": stack = "bdb:data" stack = "bdb:" + current_output_dir + "/data" sp_utilities.delete_bdb(stack) junk = sp_utilities.cmdexecute("sp_cpy.py " + instack + " " + stack) else: stack = instack qt = EMAN2_cppwrap.EMUtil.get_all_attributes(stack, "xform.projection") na = len(qt) ts = sp_utilities.get_symt(sym) ks = len(ts) angsa = [None] * na for k in range(ks): # Qfile = "Q%1d"%k # if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = optparse.os.path.join(current_output_dir, "Q%1d" % k) # delete_bdb("bdb:Q%1d"%k) sp_utilities.delete_bdb("bdb:" + Qfile) # junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = sp_utilities.cmdexecute("e2bdb.py " + stack + " --makevstack=bdb:" + Qfile) # DB = db_open_dict("bdb:Q%1d"%k) DB = EMAN2db.db_open_dict("bdb:" + Qfile) for i in range(na): ut = qt[i] * ts[k] DB.set_attr(i, "xform.projection", ut) # bt = ut.get_params("spider") # angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] # write_text_row(angsa, 'ptsma%1d.txt'%k) # junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) # junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() # if options.output_dir =="./": delete_bdb("bdb:sdata") sp_utilities.delete_bdb("bdb:" + current_output_dir + "/" + "sdata") # junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:" + current_output_dir + "/" + "sdata" sp_global_def.sxprint(sdata) junk = sp_utilities.cmdexecute("e2bdb.py " + current_output_dir + " --makevstack=" + sdata + " --filt=Q") # junk = cmdexecute("ls EMAN2DB/sdata*") # a = get_im("bdb:sdata") a = sp_utilities.get_im(sdata) a.set_attr("variabilitysymmetry", sym) # a.write_image("bdb:sdata") a.write_image(sdata) else: myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) number_of_proc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) main_node = 0 shared_comm = mpi.mpi_comm_split_type(mpi.MPI_COMM_WORLD, mpi.MPI_COMM_TYPE_SHARED, 0, mpi.MPI_INFO_NULL) myid_on_node = mpi.mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi.mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi.mpi_comm_split( mpi.MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = sp_utilities.get_colors_and_subsets( main_node, mpi.MPI_COMM_WORLD, myid, shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm, ) overhead_loading = options.overhead * number_of_proc # memory_per_node = options.memory_per_node # if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: sp_global_def.sxprint("Usage: " + usage) sp_global_def.sxprint("Please run '" + progname + " -h' for detailed options") sp_global_def.ERROR( "Invalid number of parameters used. Please see usage information above." ) return t0 = time.time() # obsolete flags options.MPI = True # options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: sp_global_def.ERROR( "Fall off has to be given for the low-pass filter", myid=myid) # if options.VAR and options.SND: # ERROR( "Only one of var and SND can be set!",myid=myid ) if options.VAR and (options.ave2D or options.ave3D or options.var2D): sp_global_def.ERROR( "When VAR is set, the program cannot output ave2D, ave3D or var2D", myid=myid, ) # if options.SND and (options.ave2D or options.ave3D): # ERROR( "When SND is set, the program cannot output ave2D or ave3D", myid=myid ) # if options.nvec > 0 : # ERROR( "PCA option not implemented", myid=myid ) # if options.nvec > 0 and options.ave3D == None: # ERROR( "When doing PCA analysis, one must set ave3D", myid=myid ) if current_decimate > 1.0 or current_decimate < 0.0: sp_global_def.ERROR( "Decimate rate should be a value between 0.0 and 1.0", myid=myid) if current_window < 0.0: sp_global_def.ERROR( "Target window size should be always larger than zero", myid=myid) if myid == main_node: img = sp_utilities.get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if min(nx, ny) < current_window: keepgoing = 0 keepgoing = sp_utilities.bcast_number_to_all(keepgoing, main_node, mpi.MPI_COMM_WORLD) if keepgoing == 0: sp_global_def.ERROR( "The target window size cannot be larger than the size of decimated image", myid=myid, ) options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not optparse.os.path.exists(current_output_dir): optparse.os.makedirs( current_output_dir ) # Never delete output_dir in the program! img_per_grp = options.img_per_grp # nvec = options.nvec radiuspca = options.radiuspca # if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = optparse.os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line += " " + a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s" % options.sym) log_main.add("Input stack : %s" % stack) log_main.add("Output_dir : %s" % current_output_dir) if options.ave3D: log_main.add("Ave3d : %s" % options.ave3D) if options.var3D: log_main.add("Var3d : %s" % options.var3D) if options.ave2D: log_main.add("Ave2D : %s" % options.ave2D) if options.var2D: log_main.add("Var2D : %s" % options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d" % options.img_per_grp) log_main.add("Image decimate rate : %4.3f" % current_decimate) log_main.add("Low pass filter : %4.3f" % options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add( "Current low pass filter is equivalent to cutoff frequency %4.3f for original image size" % round((current_fl * current_decimate), 3)) log_main.add("Window size : %5d " % current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMAN2_cppwrap.EMUtil.get_image_count(stack) img = sp_utilities.get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1": imgdata = sp_utilities.get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if i != options.sym: sp_global_def.ERROR( "The symmetry provided does not agree with the symmetry of the input stack", myid=myid, ) except: sp_global_def.ERROR( "Input stack is not prepared for symmetry, please follow instructions", myid=myid, ) i = len(sp_utilities.get_symt(options.sym)) if (old_div(nima, i)) * i != nima: sp_global_def.ERROR( "The length of the input stack is incorrect for symmetry processing", myid=myid, ) symbaselen = old_div(nima, i) else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = sp_utilities.bcast_number_to_all(nima) nx = sp_utilities.bcast_number_to_all(nx) ny = sp_utilities.bcast_number_to_all(ny) nnxo = sp_utilities.bcast_number_to_all(nnxo) nnyo = sp_utilities.bcast_number_to_all(nnyo) if current_window > max(nx, ny): sp_global_def.ERROR( "Window size is larger than the original image size") if current_decimate == 1.0: if current_window != 0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx * current_decimate + 0.5) ny = int(ny * current_decimate + 0.5) else: nx = int(current_window * current_decimate + 0.5) ny = nx symbaselen = sp_utilities.bcast_number_to_all(symbaselen) # check FFT prime number is_fft_friendly = nx == sp_fundamentals.smallprime(nx) if not is_fft_friendly: if myid == main_node: log_main.add( "The target image size is not a product of small prime numbers" ) log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.0: nx = sp_fundamentals.smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d." % current_window) else: if current_window == 0: nx = sp_fundamentals.smallprime( int(nx * current_decimate + 0.5)) current_decimate = old_div(float(nx), nnxo) ny = nx if myid == main_node: log_main.add("The decimate rate is updated to %f." % current_decimate) else: nx = sp_fundamentals.smallprime( int(current_window * current_decimate + 0.5)) ny = nx current_window = int(old_div(nx, current_decimate) + 0.5) if myid == main_node: log_main.add("The window size is updated to %d." % current_window) if myid == main_node: log_main.add("The target image size is %d" % nx) if radiuspca == -1: radiuspca = old_div(nx, 2) - 2 if myid == main_node: log_main.add("%-70s: %d\n" % ("Number of projection", nima)) img_begin, img_end = sp_applications.MPI_start_end( nima, number_of_proc, myid) """Multiline Comment0""" """ Comments from adnan, replace index_of_proj to index_of_particle, index_of_proj was not defined also varList is not defined not made an empty list there """ if options.VAR: # 2D variance images have no shifts varList = [] # varList = EMData.read_images(stack, range(img_begin, img_end)) for index_of_particle in range(img_begin, img_end): image = sp_utilities.get_im(stack, index_of_particle) if current_window > 0: varList.append( sp_fundamentals.fdecimate( sp_fundamentals.window2d(image, current_window, current_window), nx, ny, )) else: varList.append(sp_fundamentals.fdecimate(image, nx, ny)) else: if myid == main_node: t1 = time.time() proj_angles = [] aveList = [] tab = EMAN2_cppwrap.EMUtil.get_all_attributes( stack, "xform.projection") for i in range(nima): t = tab[i].get_params("spider") phi = t["phi"] theta = t["theta"] psi = t["psi"] x = theta if x > 90.0: x = 180.0 - x x = x * 10000 + psi proj_angles.append([x, t["phi"], t["theta"], t["psi"], i]) t2 = time.time() log_main.add( "%-70s: %d\n" % ("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add("Number of images per group: %d" % img_per_grp) log_main.add("Now grouping projections") proj_angles.sort() proj_angles_list = numpy.full((nima, 4), 0.0, dtype=numpy.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = sp_utilities.wrap_mpi_bcast( proj_angles_list, main_node, mpi.MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([ proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3]), ]) del proj_angles_list proj_list, mirror_list = sp_utilities.nearest_proj( proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = [] for im in proj_list: for jm in im: all_proj.append(proj_angles[jm][3]) all_proj = list(set(all_proj)) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n" % ("Finding neighboring projections lasted [s]", time.time() - t2)) log_main.add("%-70s: %d\n" % ("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]" % (old_div((time.time() - t2), 60.0))) log_main.add("Number of groups on main node: ", len(proj_list)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] # if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len( all_proj) # all neighborhood set for assigned to myid pnumber = len(proj_list) * 2.0 + img_per_grp # aveList and varList tnumber = dnumber + pnumber vol_size2 = old_div(nx**3 * 4.0 * 8, 1.0e9) vol_size1 = old_div(2.0 * nnxo**3 * 4.0 * 8, 1.0e9) proj_size = old_div(nnxo * nnyo * len(proj_list) * 4.0 * 2.0, 1.0e9) # both aveList and varList orig_data_size = old_div(nnxo * nnyo * 4.0 * tnumber, 1.0e9) reduced_data_size = old_div(nx * nx * 4.0 * tnumber, 1.0e9) full_data = numpy.full((number_of_proc, 2), -1.0, dtype=numpy.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: sp_utilities.wrap_mpi_send(full_data, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = sp_utilities.wrap_mpi_recv( iproc, mpi.MPI_COMM_WORLD) full_data[numpy.where(dummy > -1)] = dummy[numpy.where( dummy > -1)] del dummy mpi.mpi_barrier(mpi.MPI_COMM_WORLD) full_data = sp_utilities.wrap_mpi_bcast(full_data, main_node, mpi.MPI_COMM_WORLD) # find the CPU with heaviest load minindx = numpy.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add( "Nx: current image size = %d. Decimated by %f from %d" % (nx, current_decimate, nnxo)) else: log_main.add( "Nx: current image size = %d. Windowed to %d, and decimated by %f from %d" % (nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add( "Img_per_grp: user defined image per group for averaging = %d" % img_per_grp) log_main.add( "Overhead: total python overhead memory consumption = %f" % overhead_loading) log_main.add( "Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]" % (total_mem[1] + overhead_loading)) del full_data mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add( "Begin reading and preprocessing images on processor. Wait... " ) ttt = time.time() # imgdata = EMData.read_images(stack, all_proj) imgdata = [None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): # image = get_im(stack, all_proj[index_of_proj]) if current_window > 0: imgdata[index_of_proj] = sp_fundamentals.fdecimate( sp_fundamentals.window2d( sp_utilities.get_im(stack, all_proj[index_of_proj]), current_window, current_window, ), nx, ny, ) else: imgdata[index_of_proj] = sp_fundamentals.fdecimate( sp_utilities.get_im(stack, all_proj[index_of_proj]), nx, ny) if current_decimate > 0.0 and options.CTF: ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = old_div(ctf.apix, current_decimate) imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj % 100 == 0: log_main.add( " ...... %6.2f%% " % (old_div(index_of_proj, float(len(all_proj))) * 100.0)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m" % (old_div( (time.time() - ttt), 60.0))) log_main.add("Wait untill reading on all CPUs done...") """Multiline Comment1""" if not options.no_norm: mask = sp_utilities.model_circle(old_div(nx, 2) - 2, nx, nx) if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time.time() inner = old_div(nx, 2) - 4 outer = inner + 2 xform_proj_for_2D = [None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = EMAN2_cppwrap.Util.get_transform_params( imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = ( dpar["phi"], dpar["theta"], dpar["psi"], -dpar["tx"] * current_decimate, -dpar["ty"] * current_decimate, ) grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = EMAN2_cppwrap.Util.get_transform_params( imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW( cpar["phi"], cpar["theta"], cpar["psi"], -cpar["tx"] * current_decimate, -cpar["ty"] * current_decimate, mirror_list[i][j], ) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, 180 - (phiM - cpar["phi"]), 0.0, 0.0, 1.0, ) else: if mirror == 0: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, -(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, -(180 - (phiM - cpar["phi"])), 0.0, 0.0, 1.0, ) imgdata[mj].set_attr( "xform.align2d", EMAN2_cppwrap.Transform({ "type": "2D", "alpha": alpha, "tx": sx, "ty": sy, "mirror": mirror, "scale": 1.0, }), ) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = EMAN2_cppwrap.Util.infomask( grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] = old_div(grp_imgdata[k], std) if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = sp_filter.filt_tanl( grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = sp_statistics.aves_wiener( grp_imgdata, SNR=1.0e5, interpolation_method="linear") else: ave, var = sp_statistics.ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = sp_morphology.square_root(sp_morphology.threshold(var)) sp_utilities.set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) sp_utilities.set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] """Multiline Comment2""" if (myid == heavy_load_myid) and (i % 100 == 0): log_main.add(" ......%6.2f%% " % (old_div(i, float(len(proj_list))) * 100.0)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("Computing aveList and varList took %12.1f [m]" % (old_div((time.time() - ttt), 60.0))) xform_proj_for_2D = sp_utilities.wrap_mpi_gatherv( xform_proj_for_2D, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: sp_utilities.write_text_row( [str(entry) for entry in xform_proj_for_2D], optparse.os.path.join(current_output_dir, "params.txt"), ) del xform_proj_for_2D mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.ave2D: if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image( optparse.os.path.join( current_output_dir, options.ave2D), km, ) km += 1 else: nl = mpi.mpi_recv( 1, mpi.MPI_INT, i, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) nl = int(nl[0]) for im in range(nl): ave = sp_utilities.recv_EMData( i, im + i + 70000) """Multiline Comment3""" tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.ave2D), km, ) km += 1 else: mpi.mpi_send( len(aveList), 1, mpi.MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) for im in range(len(aveList)): sp_utilities.send_EMData(aveList[im], main_node, im + myid + 70000) """Multiline Comment4""" if myid == main_node: sp_applications.header( optparse.os.path.join(current_output_dir, options.ave2D), params="xform.projection", fimport=optparse.os.path.join(current_output_dir, "params.txt"), ) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.ave3D: t5 = time.time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = sp_reconstruction.recons3d_4nn_MPI( myid, aveList, symmetry=options.sym, npad=options.npad) sp_utilities.bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = sp_fundamentals.resample( ave3D, old_div(1.0, current_decimate)) ave3D = sp_fundamentals.fpol( ave3D, nnxo, nnxo, nnxo) # always to the orignal image size sp_utilities.set_pixel_size(ave3D, 1.0) ave3D.write_image( optparse.os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]" % (old_div((time.time() - t5), 60.0))) log_main.add("%-70s: %s\n" % ("The reconstructed ave3D is saved as ", options.ave3D)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList """Multiline Comment5""" if options.ave3D: del ave3D if options.var2D: if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(varList)): tmpvol = sp_fundamentals.fpol( varList[im], nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.var2D), km, ) km += 1 else: nl = mpi.mpi_recv( 1, mpi.MPI_INT, i, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) nl = int(nl[0]) for im in range(nl): ave = sp_utilities.recv_EMData( i, im + i + 70000) tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.var2D), km, ) km += 1 else: mpi.mpi_send( len(varList), 1, mpi.MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) for im in range(len(varList)): sp_utilities.send_EMData( varList[im], main_node, im + myid + 70000) # What with the attributes?? mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: sp_applications.header( optparse.os.path.join(current_output_dir, options.var2D), params="xform.projection", fimport=optparse.os.path.join(current_output_dir, "params.txt"), ) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time.time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = sp_reconstruction.recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) # res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: if current_decimate != 1.0: res = sp_fundamentals.resample( res, old_div(1.0, current_decimate)) res = sp_fundamentals.fpol(res, nnxo, nnxo, nnxo) sp_utilities.set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add( "%-70s: %s\n" % ("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]" % (old_div( (time.time() - t6), 60.0))) log_main.add("Total computation time %f12.1 [m]" % (old_div( (time.time() - t0), 60.0))) log_main.add("sx3dvariability finishes") if RUNNING_UNDER_MPI: sp_global_def.MPI = False sp_global_def.BATCH = False
def main(): global Tracker, Blockdata progname = os.path.basename(sys.argv[0]) usage = progname + " --output_dir=output_dir --isac_dir=output_dir_of_isac " parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option( "--pw_adjustment", type="string", default="analytical_model", help= "adjust power spectrum of 2-D averages to an analytic model. Other opions: no_adjustment; bfactor; a text file of 1D rotationally averaged PW", ) #### Four options for --pw_adjustment: # 1> analytical_model(default); # 2> no_adjustment; # 3> bfactor; # 4> adjust_to_given_pw2(user has to provide a text file that contains 1D rotationally averaged PW) # options in common parser.add_option( "--isac_dir", type="string", default="", help="ISAC run output directory, input directory for this command", ) parser.add_option( "--output_dir", type="string", default="", help="output directory where computed averages are saved", ) parser.add_option( "--pixel_size", type="float", default=-1.0, help= "pixel_size of raw images. one can put 1.0 in case of negative stain data", ) parser.add_option( "--fl", type="float", default=-1.0, help= "low pass filter, = -1.0, not applied; =0.0, using FH1 (initial resolution), = 1.0 using FH2 (resolution after local alignment), or user provided value in absolute freqency [0.0:0.5]", ) parser.add_option("--stack", type="string", default="", help="data stack used in ISAC") parser.add_option("--radius", type="int", default=-1, help="radius") parser.add_option("--xr", type="float", default=-1.0, help="local alignment search range") # parser.add_option("--ts", type ="float", default =1.0, help= "local alignment search step") parser.add_option( "--fh", type="float", default=-1.0, help="local alignment high frequencies limit", ) # parser.add_option("--maxit", type ="int", default =5, help= "local alignment iterations") parser.add_option("--navg", type="int", default=1000000, help="number of aveages") parser.add_option( "--local_alignment", action="store_true", default=False, help="do local alignment", ) parser.add_option( "--noctf", action="store_true", default=False, help= "no ctf correction, useful for negative stained data. always ctf for cryo data", ) parser.add_option( "--B_start", type="float", default=45.0, help= "start frequency (Angstrom) of power spectrum for B_factor estimation", ) parser.add_option( "--Bfactor", type="float", default=-1.0, help= "User defined bactors (e.g. 25.0[A^2]). By default, the program automatically estimates B-factor. ", ) (options, args) = parser.parse_args(sys.argv[1:]) adjust_to_analytic_model = (True if options.pw_adjustment == "analytical_model" else False) no_adjustment = True if options.pw_adjustment == "no_adjustment" else False B_enhance = True if options.pw_adjustment == "bfactor" else False adjust_to_given_pw2 = ( True if not (adjust_to_analytic_model or no_adjustment or B_enhance) else False) # mpi nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) Blockdata = {} Blockdata["nproc"] = nproc Blockdata["myid"] = myid Blockdata["main_node"] = 0 Blockdata["shared_comm"] = mpi.mpi_comm_split_type( mpi.MPI_COMM_WORLD, mpi.MPI_COMM_TYPE_SHARED, 0, mpi.MPI_INFO_NULL) Blockdata["myid_on_node"] = mpi.mpi_comm_rank(Blockdata["shared_comm"]) Blockdata["no_of_processes_per_group"] = mpi.mpi_comm_size( Blockdata["shared_comm"]) masters_from_groups_vs_everything_else_comm = mpi.mpi_comm_split( mpi.MPI_COMM_WORLD, Blockdata["main_node"] == Blockdata["myid_on_node"], Blockdata["myid_on_node"], ) Blockdata["color"], Blockdata[ "no_of_groups"], balanced_processor_load_on_nodes = sp_utilities.get_colors_and_subsets( Blockdata["main_node"], mpi.MPI_COMM_WORLD, Blockdata["myid"], Blockdata["shared_comm"], Blockdata["myid_on_node"], masters_from_groups_vs_everything_else_comm, ) # We need two nodes for processing of volumes Blockdata["node_volume"] = [ Blockdata["no_of_groups"] - 3, Blockdata["no_of_groups"] - 2, Blockdata["no_of_groups"] - 1, ] # For 3D stuff take three last nodes # We need two CPUs for processing of volumes, they are taken to be main CPUs on each volume # We have to send the two myids to all nodes so we can identify main nodes on two selected groups. Blockdata["nodes"] = [ Blockdata["node_volume"][0] * Blockdata["no_of_processes_per_group"], Blockdata["node_volume"][1] * Blockdata["no_of_processes_per_group"], Blockdata["node_volume"][2] * Blockdata["no_of_processes_per_group"], ] # End of Blockdata: sorting requires at least three nodes, and the used number of nodes be integer times of three sp_global_def.BATCH = True sp_global_def.MPI = True if adjust_to_given_pw2: checking_flag = 0 if Blockdata["myid"] == Blockdata["main_node"]: if not os.path.exists(options.pw_adjustment): checking_flag = 1 checking_flag = sp_utilities.bcast_number_to_all( checking_flag, Blockdata["main_node"], mpi.MPI_COMM_WORLD) if checking_flag == 1: sp_global_def.ERROR("User provided power spectrum does not exist", myid=Blockdata["myid"]) Tracker = {} Constants = {} Constants["isac_dir"] = options.isac_dir Constants["masterdir"] = options.output_dir Constants["pixel_size"] = options.pixel_size Constants["orgstack"] = options.stack Constants["radius"] = options.radius Constants["xrange"] = options.xr Constants["FH"] = options.fh Constants["low_pass_filter"] = options.fl # Constants["maxit"] = options.maxit Constants["navg"] = options.navg Constants["B_start"] = options.B_start Constants["Bfactor"] = options.Bfactor if adjust_to_given_pw2: Constants["modelpw"] = options.pw_adjustment Tracker["constants"] = Constants # ------------------------------------------------------------- # # Create and initialize Tracker dictionary with input options # State Variables # <<<---------------------->>>imported functions<<<--------------------------------------------- # x_range = max(Tracker["constants"]["xrange"], int(1./Tracker["ini_shrink"])+1) # y_range = x_range ####----------------------------------------------------------- # Create Master directory and associated subdirectories line = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()) + " =>" if Tracker["constants"]["masterdir"] == Tracker["constants"]["isac_dir"]: masterdir = os.path.join(Tracker["constants"]["isac_dir"], "sharpen") else: masterdir = Tracker["constants"]["masterdir"] if Blockdata["myid"] == Blockdata["main_node"]: msg = "Postprocessing ISAC 2D averages starts" sp_global_def.sxprint(line, "Postprocessing ISAC 2D averages starts") if not masterdir: timestring = time.strftime("_%d_%b_%Y_%H_%M_%S", time.localtime()) masterdir = "sharpen_" + Tracker["constants"]["isac_dir"] os.makedirs(masterdir) else: if os.path.exists(masterdir): sp_global_def.sxprint("%s already exists" % masterdir) else: os.makedirs(masterdir) sp_global_def.write_command(masterdir) subdir_path = os.path.join(masterdir, "ali2d_local_params_avg") if not os.path.exists(subdir_path): os.mkdir(subdir_path) subdir_path = os.path.join(masterdir, "params_avg") if not os.path.exists(subdir_path): os.mkdir(subdir_path) li = len(masterdir) else: li = 0 li = mpi.mpi_bcast(li, 1, mpi.MPI_INT, Blockdata["main_node"], mpi.MPI_COMM_WORLD)[0] masterdir = mpi.mpi_bcast(masterdir, li, mpi.MPI_CHAR, Blockdata["main_node"], mpi.MPI_COMM_WORLD) masterdir = b"".join(masterdir).decode('latin1') Tracker["constants"]["masterdir"] = masterdir log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = Tracker["constants"]["masterdir"] + "/" while not os.path.exists(Tracker["constants"]["masterdir"]): sp_global_def.sxprint( "Node ", Blockdata["myid"], " waiting...", Tracker["constants"]["masterdir"], ) time.sleep(1) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if Blockdata["myid"] == Blockdata["main_node"]: init_dict = {} sp_global_def.sxprint(Tracker["constants"]["isac_dir"]) Tracker["directory"] = os.path.join(Tracker["constants"]["isac_dir"], "2dalignment") core = sp_utilities.read_text_row( os.path.join(Tracker["directory"], "initial2Dparams.txt")) for im in range(len(core)): init_dict[im] = core[im] del core else: init_dict = 0 init_dict = sp_utilities.wrap_mpi_bcast(init_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) ### do_ctf = True if options.noctf: do_ctf = False if Blockdata["myid"] == Blockdata["main_node"]: if do_ctf: sp_global_def.sxprint("CTF correction is on") else: sp_global_def.sxprint("CTF correction is off") if options.local_alignment: sp_global_def.sxprint("local refinement is on") else: sp_global_def.sxprint("local refinement is off") if B_enhance: sp_global_def.sxprint("Bfactor is to be applied on averages") elif adjust_to_given_pw2: sp_global_def.sxprint( "PW of averages is adjusted to a given 1D PW curve") elif adjust_to_analytic_model: sp_global_def.sxprint( "PW of averages is adjusted to analytical model") else: sp_global_def.sxprint("PW of averages is not adjusted") # Tracker["constants"]["orgstack"] = "bdb:"+ os.path.join(Tracker["constants"]["isac_dir"],"../","sparx_stack") image = sp_utilities.get_im(Tracker["constants"]["orgstack"], 0) Tracker["constants"]["nnxo"] = image.get_xsize() if Tracker["constants"]["pixel_size"] == -1.0: sp_global_def.sxprint( "Pixel size value is not provided by user. extracting it from ctf header entry of the original stack." ) try: ctf_params = image.get_attr("ctf") Tracker["constants"]["pixel_size"] = ctf_params.apix except: sp_global_def.ERROR( "Pixel size could not be extracted from the original stack.", myid=Blockdata["myid"], ) ## Now fill in low-pass filter isac_shrink_path = os.path.join(Tracker["constants"]["isac_dir"], "README_shrink_ratio.txt") if not os.path.exists(isac_shrink_path): sp_global_def.ERROR( "%s does not exist in the specified ISAC run output directory" % (isac_shrink_path), myid=Blockdata["myid"], ) isac_shrink_file = open(isac_shrink_path, "r") isac_shrink_lines = isac_shrink_file.readlines() isac_shrink_ratio = float( isac_shrink_lines[5] ) # 6th line: shrink ratio (= [target particle radius]/[particle radius]) used in the ISAC run isac_radius = float( isac_shrink_lines[6] ) # 7th line: particle radius at original pixel size used in the ISAC run isac_shrink_file.close() print("Extracted parameter values") print("ISAC shrink ratio : {0}".format(isac_shrink_ratio)) print("ISAC particle radius : {0}".format(isac_radius)) Tracker["ini_shrink"] = isac_shrink_ratio else: Tracker["ini_shrink"] = 0.0 Tracker = sp_utilities.wrap_mpi_bcast(Tracker, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) # print(Tracker["constants"]["pixel_size"], "pixel_size") x_range = max( Tracker["constants"]["xrange"], int(old_div(1.0, Tracker["ini_shrink"]) + 0.99999), ) a_range = y_range = x_range if Blockdata["myid"] == Blockdata["main_node"]: parameters = sp_utilities.read_text_row( os.path.join(Tracker["constants"]["isac_dir"], "all_parameters.txt")) else: parameters = 0 parameters = sp_utilities.wrap_mpi_bcast(parameters, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) params_dict = {} list_dict = {} # parepare params_dict # navg = min(Tracker["constants"]["navg"]*Blockdata["nproc"], EMUtil.get_image_count(os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf"))) navg = min( Tracker["constants"]["navg"], EMAN2_cppwrap.EMUtil.get_image_count( os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf")), ) global_dict = {} ptl_list = [] memlist = [] if Blockdata["myid"] == Blockdata["main_node"]: sp_global_def.sxprint("Number of averages computed in this run is %d" % navg) for iavg in range(navg): params_of_this_average = [] image = sp_utilities.get_im( os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf"), iavg, ) members = sorted(image.get_attr("members")) memlist.append(members) for im in range(len(members)): abs_id = members[im] global_dict[abs_id] = [iavg, im] P = sp_utilities.combine_params2( init_dict[abs_id][0], init_dict[abs_id][1], init_dict[abs_id][2], init_dict[abs_id][3], parameters[abs_id][0], old_div(parameters[abs_id][1], Tracker["ini_shrink"]), old_div(parameters[abs_id][2], Tracker["ini_shrink"]), parameters[abs_id][3], ) if parameters[abs_id][3] == -1: sp_global_def.sxprint( "WARNING: Image #{0} is an unaccounted particle with invalid 2D alignment parameters and should not be the member of any classes. Please check the consitency of input dataset." .format(abs_id) ) # How to check what is wrong about mirror = -1 (Toshio 2018/01/11) params_of_this_average.append([P[0], P[1], P[2], P[3], 1.0]) ptl_list.append(abs_id) params_dict[iavg] = params_of_this_average list_dict[iavg] = members sp_utilities.write_text_row( params_of_this_average, os.path.join( Tracker["constants"]["masterdir"], "params_avg", "params_avg_%03d.txt" % iavg, ), ) ptl_list.sort() init_params = [None for im in range(len(ptl_list))] for im in range(len(ptl_list)): init_params[im] = [ptl_list[im]] + params_dict[global_dict[ ptl_list[im]][0]][global_dict[ptl_list[im]][1]] sp_utilities.write_text_row( init_params, os.path.join(Tracker["constants"]["masterdir"], "init_isac_params.txt"), ) else: params_dict = 0 list_dict = 0 memlist = 0 params_dict = sp_utilities.wrap_mpi_bcast(params_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) list_dict = sp_utilities.wrap_mpi_bcast(list_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) memlist = sp_utilities.wrap_mpi_bcast(memlist, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) # Now computing! del init_dict tag_sharpen_avg = 1000 ## always apply low pass filter to B_enhanced images to suppress noise in high frequencies enforced_to_H1 = False if B_enhance: if Tracker["constants"]["low_pass_filter"] == -1.0: enforced_to_H1 = True # distribute workload among mpi processes image_start, image_end = sp_applications.MPI_start_end( navg, Blockdata["nproc"], Blockdata["myid"]) if Blockdata["myid"] == Blockdata["main_node"]: cpu_dict = {} for iproc in range(Blockdata["nproc"]): local_image_start, local_image_end = sp_applications.MPI_start_end( navg, Blockdata["nproc"], iproc) for im in range(local_image_start, local_image_end): cpu_dict[im] = iproc else: cpu_dict = 0 cpu_dict = sp_utilities.wrap_mpi_bcast(cpu_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) slist = [None for im in range(navg)] ini_list = [None for im in range(navg)] avg1_list = [None for im in range(navg)] avg2_list = [None for im in range(navg)] data_list = [None for im in range(navg)] plist_dict = {} if Blockdata["myid"] == Blockdata["main_node"]: if B_enhance: sp_global_def.sxprint( "Avg ID B-factor FH1(Res before ali) FH2(Res after ali)") else: sp_global_def.sxprint( "Avg ID FH1(Res before ali) FH2(Res after ali)") FH_list = [[0, 0.0, 0.0] for im in range(navg)] for iavg in range(image_start, image_end): mlist = EMAN2_cppwrap.EMData.read_images( Tracker["constants"]["orgstack"], list_dict[iavg]) for im in range(len(mlist)): sp_utilities.set_params2D(mlist[im], params_dict[iavg][im], xform="xform.align2d") if options.local_alignment: new_avg, plist, FH2 = sp_applications.refinement_2d_local( mlist, Tracker["constants"]["radius"], a_range, x_range, y_range, CTF=do_ctf, SNR=1.0e10, ) plist_dict[iavg] = plist FH1 = -1.0 else: new_avg, frc, plist = compute_average( mlist, Tracker["constants"]["radius"], do_ctf) FH1 = get_optimistic_res(frc) FH2 = -1.0 FH_list[iavg] = [iavg, FH1, FH2] if B_enhance: new_avg, gb = apply_enhancement( new_avg, Tracker["constants"]["B_start"], Tracker["constants"]["pixel_size"], Tracker["constants"]["Bfactor"], ) sp_global_def.sxprint(" %6d %6.3f %4.3f %4.3f" % (iavg, gb, FH1, FH2)) elif adjust_to_given_pw2: roo = sp_utilities.read_text_file(Tracker["constants"]["modelpw"], -1) roo = roo[0] # always on the first column new_avg = adjust_pw_to_model(new_avg, Tracker["constants"]["pixel_size"], roo) sp_global_def.sxprint(" %6d %4.3f %4.3f " % (iavg, FH1, FH2)) elif adjust_to_analytic_model: new_avg = adjust_pw_to_model(new_avg, Tracker["constants"]["pixel_size"], None) sp_global_def.sxprint(" %6d %4.3f %4.3f " % (iavg, FH1, FH2)) elif no_adjustment: pass if Tracker["constants"]["low_pass_filter"] != -1.0: if Tracker["constants"]["low_pass_filter"] == 0.0: low_pass_filter = FH1 elif Tracker["constants"]["low_pass_filter"] == 1.0: low_pass_filter = FH2 if not options.local_alignment: low_pass_filter = FH1 else: low_pass_filter = Tracker["constants"]["low_pass_filter"] if low_pass_filter >= 0.45: low_pass_filter = 0.45 new_avg = sp_filter.filt_tanl(new_avg, low_pass_filter, 0.02) else: # No low pass filter but if enforced if enforced_to_H1: new_avg = sp_filter.filt_tanl(new_avg, FH1, 0.02) if B_enhance: new_avg = sp_fundamentals.fft(new_avg) new_avg.set_attr("members", list_dict[iavg]) new_avg.set_attr("n_objects", len(list_dict[iavg])) slist[iavg] = new_avg sp_global_def.sxprint( time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()) + " =>", "Refined average %7d" % iavg, ) ## send to main node to write mpi.mpi_barrier(mpi.MPI_COMM_WORLD) for im in range(navg): # avg if (cpu_dict[im] == Blockdata["myid"] and Blockdata["myid"] != Blockdata["main_node"]): sp_utilities.send_EMData(slist[im], Blockdata["main_node"], tag_sharpen_avg) elif (cpu_dict[im] == Blockdata["myid"] and Blockdata["myid"] == Blockdata["main_node"]): slist[im].set_attr("members", memlist[im]) slist[im].set_attr("n_objects", len(memlist[im])) slist[im].write_image( os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), im, ) elif (cpu_dict[im] != Blockdata["myid"] and Blockdata["myid"] == Blockdata["main_node"]): new_avg_other_cpu = sp_utilities.recv_EMData( cpu_dict[im], tag_sharpen_avg) new_avg_other_cpu.set_attr("members", memlist[im]) new_avg_other_cpu.set_attr("n_objects", len(memlist[im])) new_avg_other_cpu.write_image( os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), im, ) if options.local_alignment: if cpu_dict[im] == Blockdata["myid"]: sp_utilities.write_text_row( plist_dict[im], os.path.join( Tracker["constants"]["masterdir"], "ali2d_local_params_avg", "ali2d_local_params_avg_%03d.txt" % im, ), ) if (cpu_dict[im] == Blockdata["myid"] and cpu_dict[im] != Blockdata["main_node"]): sp_utilities.wrap_mpi_send(plist_dict[im], Blockdata["main_node"], mpi.MPI_COMM_WORLD) sp_utilities.wrap_mpi_send(FH_list, Blockdata["main_node"], mpi.MPI_COMM_WORLD) elif (cpu_dict[im] != Blockdata["main_node"] and Blockdata["myid"] == Blockdata["main_node"]): dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) plist_dict[im] = dummy dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) FH_list[im] = dummy[im] else: if (cpu_dict[im] == Blockdata["myid"] and cpu_dict[im] != Blockdata["main_node"]): sp_utilities.wrap_mpi_send(FH_list, Blockdata["main_node"], mpi.MPI_COMM_WORLD) elif (cpu_dict[im] != Blockdata["main_node"] and Blockdata["myid"] == Blockdata["main_node"]): dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) FH_list[im] = dummy[im] mpi.mpi_barrier(mpi.MPI_COMM_WORLD) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.local_alignment: if Blockdata["myid"] == Blockdata["main_node"]: ali3d_local_params = [None for im in range(len(ptl_list))] for im in range(len(ptl_list)): ali3d_local_params[im] = [ptl_list[im]] + plist_dict[ global_dict[ptl_list[im]][0]][global_dict[ptl_list[im]][1]] sp_utilities.write_text_row( ali3d_local_params, os.path.join(Tracker["constants"]["masterdir"], "ali2d_local_params.txt"), ) sp_utilities.write_text_row( FH_list, os.path.join(Tracker["constants"]["masterdir"], "FH_list.txt")) else: if Blockdata["myid"] == Blockdata["main_node"]: sp_utilities.write_text_row( FH_list, os.path.join(Tracker["constants"]["masterdir"], "FH_list.txt")) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) target_xr = 3 target_yr = 3 if Blockdata["myid"] == 0: cmd = "{} {} {} {} {} {} {} {} {} {}".format( "sp_chains.py", os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), os.path.join(Tracker["constants"]["masterdir"], "junk.hdf"), os.path.join(Tracker["constants"]["masterdir"], "ordered_class_averages.hdf"), "--circular", "--radius=%d" % Tracker["constants"]["radius"], "--xr=%d" % (target_xr + 1), "--yr=%d" % (target_yr + 1), "--align", ">/dev/null", ) junk = sp_utilities.cmdexecute(cmd) cmd = "{} {}".format( "rm -rf", os.path.join(Tracker["constants"]["masterdir"], "junk.hdf")) junk = sp_utilities.cmdexecute(cmd) return