Exemple #1
0
def plot3D(show=True):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    # ax = fig.gca(projection='3d')
    predicted = sess.run(inference(X), feed_dict={X: train_X})
    x = np.squeeze(np.asarray(train_X1))
    y = np.squeeze(np.asarray(train_X2))
    z = np.squeeze(np.asarray(train_Y))
    z1 = np.squeeze(np.asarray(predicted))
    ax.plot(x, y, zs=z, c='b', label='Original')
    ax.plot(x, y, zs=z1, c='r', label='Fit')
    # ax.scatter(train_X1, train_X2, train_Y, c='y', marker='s')
    # ax.scatter(train_X1, train_X2, predicted, c='r', marker='v')
    ax.set_xlabel('X1')
    ax.set_ylabel('X2')
    ax.set_zlabel('Y')
    ax.legend()
    buf = io.BytesIO()

    if show:
        # If want to view image in Tensorboard, do not show plot => Strange
        # bug!!!
        plt.show()
    else:
        # plt.savefig("/tmp/test.png", format='png')
        plt.savefig(buf, format='png')
        buf.seek(0)
    return buf
def sympletic_integrator_step(dt: float, bodies: list, pairs: list, ax: Axes3D,
                              *args, **kwargs):
    """A sympletic integrator to update the positions
    of bodies in our system of bodies.

    Reference
    ---------
    [1]: Sympletic Integrator on Wikipedia
         https://en.wikipedia.org/wiki/Symplectic_integrator
    """
    for (([x1, y1, z1], v1, m1), ([x2, y2, z2], v2, m2)) in pairs:
        dx = x1 - x2
        dy = y1 - y2
        dz = z1 - z2
        mag = dt * ((dx * dx + dy * dy + dz * dz)**(-1.5))
        b1m = m1 * mag
        b2m = m2 * mag
        v1[0] -= dx * b2m
        v1[1] -= dy * b2m
        v1[2] -= dz * b2m
        v2[0] += dx * b1m
        v2[1] += dy * b1m
        v2[2] += dz * b1m
    for (r, [vx, vy, vz], m) in bodies:
        r[0] += dt * vx
        r[1] += dt * vy
        r[2] += dt * vz
    ax.clear()
    ax.axis("off")
    ax.set_xlim(-20., 20.)
    ax.set_ylim(-20., 20.)
    ax.set_zlim(-20., 20.)
    for ii in range(360):
        ax.view_init(elev=90., azim=ii)
    for name, body in BODIES.items():
        pos, _, mass = body
        sc = ax.scatter(*pos, s=20 * (mass**0.3), label=name)
    ax.legend()
    return sc
Exemple #3
0
    def plot_loss(self, X, Y, loss, show=True):
        # Graphic display
        title = str(self.step) + ': Epochs:' + str(self.epochs) + \
            " batch:" + str(self.batch_size) + \
            " alpha:" + str(self.learning_rate)
        train_X1 = X[:, 0]
        fig = plt.figure()
        ax = fig.gca(projection='3d')
        ax.text2D(0.05, 0.95, title, transform=ax.transAxes)
        # trisurf plot
        # ax.plot_trisurf(np.ravel(train_X1),
        #                 np.ravel(train_X2), np.ravel(Y), color='b')
        ax.plot_trisurf(np.ravel(train_X1), np.ravel(Y), np.ravel(loss))

        ax.set_xlabel('Weight')
        ax.set_ylabel('bias')
        ax.set_zlabel('Loss')
        ax.legend()

        # save image to buffer
        buf = io.BytesIO()
        if show:
            # If want to view image in Tensorboard, do not show plot => Strange
            # bug!!!
            image_path = self.logs_path + "/images"
            if not os.path.exists(image_path):
                os.mkdir(image_path)
            filename = image_path + "/" + \
                "loss-" + \
                time.strftime("%Y%m%d-%H%M%S", time.localtime()) + ".png"
            plt.savefig(filename, format='png')
            plt.show()
        else:
            plt.savefig(buf, format='png')
            buf.seek(0)
        plt.close()
        # plt.clf()
        return buf
    def plot(self, show=True):
        # Graphic display
        predicted = self.sess.run(self.inference(reuse=True),
                                  feed_dict={self.X: self.input_X})
        title = 'Epochs:' + str(self.epochs) + \
            " batch:" + str(self.batch_size) + \
            " layers:" + str(self.n_layers) + \
            " neurons:" + str(self.n_neurals) + \
            " alpha:" + str(self.learning_rate)
        if self.n_features == 1:  # plot 2D image
            plt.title(title)
            # plt.plot(self.train_X, self.train_Y, c='b', label='Original data')
            # plt.plot(self.train_X, predicted, c='r', label='Fitted')
            plt.scatter(self.input_X,
                        self.label_Y,
                        c='b',
                        label='Original data')
            plt.scatter(self.input_X, predicted, c='r', label='Fitted')

            plt.legend()
        else:  # plot 3D for X1, X2
            if (self.n_features == 2):
                train_X1, train_X2 = np.hsplit(self.input_X, self.n_features)
            else:
                train_X1, train_X2, _ = np.hsplit(self.input_X,
                                                  self.n_features)
            fig = plt.figure()
            # ax = fig.add_subplot(111, projection='3d')
            ax = fig.gca(projection='3d')
            ax.text2D(0.05, 0.95, title, transform=ax.transAxes)
            x = np.squeeze(np.asarray(train_X1))
            y = np.squeeze(np.asarray(train_X2))
            z = np.squeeze(np.asarray(self.label_Y))
            z1 = np.squeeze(np.asarray(predicted))
            # ax.plot(x, y, zs=z, c='b', label='Original data')
            # ax.plot(x, y, zs=z1, c='r', label='Fitted')
            ax.scatter(train_X1,
                       train_X2,
                       self.label_Y,
                       c='b',
                       marker='s',
                       label='Original data')
            ax.scatter(train_X1,
                       train_X2,
                       predicted,
                       c='r',
                       marker='v',
                       label='Fitted')
            ax.set_xlabel('X1')
            ax.set_ylabel('X2')
            ax.set_zlabel('Y')
            ax.legend()

        # save image to buffer
        buf = io.BytesIO()
        if show:
            # If want to view image in Tensorboard, do not show plot => Strange
            # bug!!!
            image_path = self.logs_path + "/images"
            if not os.path.exists(image_path):
                os.mkdir(image_path)
            filename = image_path + "/" + \
                time.strftime("%Y%m%d-%H%M%S", time.localtime()) + ".png"
            plt.savefig(filename, format='png')
            plt.show()
        else:
            plt.savefig(buf, format='png')
            buf.seek(0)
        plt.close('all')
        return buf
Exemple #5
0
plt.title('I hate datasets line graph')
plt.xlabel('County Name')
plt.ylabel('Average Upload number')
plt.tight_layout(pad=0.5)
plt.show()

################### 3d graph implementation
#creating graph based on min, max, avg

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
#ax.scatter(y,z,w,color='blue',marker='o')
for (k, v) in enumerate(y):
    ax.scatter(y[k], z[k], w[k], marker='o')
    #ax.legend([x[k]])
ax.legend(x)
ax.set_title('I hate datasets in 3d')
ax.set_xlabel('min')
ax.set_ylabel('Max')
ax.set_zlabel('Avg')
plt.show()

############## hw 3 portion
#brings in data and sends it into gudhi
distance_matrix = gudhi.read_lower_triangular_matrix_from_csv_file(
    csv_file='Maryland_Broadband_Speed_Test__County_Upload.csv')
rips_complex = gudhi.RipsComplex(distance_matrix=distance_matrix,
                                 max_edge_length=12.0)  #setting parameters
simplex_tree = rips_complex.create_simplex_tree(max_dimension=1)
result_str = 'Rips complex is of dimension ' + repr(simplex_tree.dimension()) + ' - ' + \
    repr(simplex_tree.num_simplices()) + ' simplices - ' + \
Exemple #6
0
#%pylab inline
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D as ax

x = np.arange(0, 10, 0.1)
y = np.sin(x)

fig, ax = plt.subplots(facecolor='w', edgecolor='k')
ax.plot(x, y, marker="o", color="r", linestyle='None')

ax.grid(True)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.grid(True)
ax.legend(["y = x**2"])

plt.title('Puntos')
plt.show()

fig.savefig("grafica.png")
Exemple #7
0
    def plot(self, X, Y, show=True):
        # Graphic display
        predicted = self.sess.run(self.predict_model(X))
        title = str(self.step) + ': Epochs:' + str(self.epochs) + \
            " batch:" + str(self.batch_size) + \
            " alpha:" + str(self.learning_rate)
        if self.n_features == 1:  # plot 2D image
            plt.title(title)
            # plt.plot(self.train_X, self.train_Y, c='b', label='Original data')
            # plt.plot(self.train_X, predicted, c='r', label='Fitted')
            plt.scatter(X, Y, c='b', label='Original data')
            plt.scatter(X, predicted, c='r', label='Fitted')
            plt.legend()
        else:  # plot 3D for X1, X2
            if (self.n_features == 2):
                train_X1, train_X2 = np.hsplit(X, self.n_features)
            else:
                train_X1, train_X2, _ = np.hsplit(X, self.n_features)
            fig = plt.figure()
            ax = fig.gca(projection='3d')
            ax.text2D(0.05, 0.95, title, transform=ax.transAxes)
            # line plot
            # x = np.squeeze(np.asarray(train_X1))
            # y = np.squeeze(np.asarray(train_X2))
            # z = np.squeeze(np.asarray(Y))
            # z1 = np.squeeze(np.asarray(predicted))
            # ax.plot(x, y, zs=z, c='b', label='Original data')
            # ax.plot(x, y, zs=z1, c='r', label='Fitted')

            # statter plot
            ax.scatter(train_X1,
                       train_X2,
                       Y,
                       c='b',
                       marker='s',
                       label='Original data')
            # ax.scatter(train_X1, train_X2, predicted,
            #            c='r', marker='v', label='Fitted')

            # trisurf plot
            # ax.plot_trisurf(np.ravel(train_X1),
            #                 np.ravel(train_X2), np.ravel(Y), color='b')
            ax.plot_trisurf(np.ravel(train_X1),
                            np.ravel(train_X2),
                            np.ravel(predicted),
                            color='r')

            ax.set_xlabel('X1')
            ax.set_ylabel('X2')
            ax.set_zlabel('Y')
            ax.legend()

        # save image to buffer
        buf = io.BytesIO()
        if show:
            # If want to view image in Tensorboard, do not show plot => Strange
            # bug!!!
            image_path = self.logs_path + "/images"
            if not os.path.exists(image_path):
                os.mkdir(image_path)
            filename = image_path + "/" + \
                time.strftime("%Y%m%d-%H%M%S", time.localtime()) + ".png"
            plt.savefig(filename, format='png')
            plt.show()
        else:
            plt.savefig(buf, format='png')
            buf.seek(0)
        plt.close()
        # plt.clf()
        return buf