def __init__(self, axes, **kwargs): # Use the first plotted Line2D in each axes artists = [ax.lines[0] for ax in axes] kwargs['display'] = 'single' HighlightingDataCursor.__init__(self, artists, **kwargs) self.highlights = [self.create_highlight(artist) for artist in artists] plt.setp(self.highlights, visible=False)
def plot_trajectories(data_dict, special_idx=None, title='State space trajectories', show_flag=SHOW_FLAG, save_flag=False, figure_dir=FOLDER_FIGURES, figure_format=FIG_FORMAT, figure_name='Trajectories', labels=None, figsize=LARGE_SIZE): mp.pyplot.figure(title, figsize=figsize) ax = mp.pyplot.subplot(111) mp.pyplot.hold(True) no_dims = len(data_dict) if no_dims > 2: from mpl_toolkits.mplot3d import Axes3D ax = mp.pyplot.subplot(111, projection='3d') else: ax = mp.pyplot.subplot(111) lines = [] ax_labels = [] data = [] for i, var in enumerate(data_dict): if i == 0: mp.pyplot.title(title) ax_labels.append(var) data.append(data_dict[var]) nTS = data[0].shape[1] if labels is None: labels = np.array(range(nTS)).astype(str) lines.append([]) if special_idx is None: for iTS in range(nTS): if no_dims > 2: line, = mp.pyplot.plot(data[0][:, iTS], data[1][:, iTS], data[2][:, iTS], 'k', alpha=0.3, label=labels[iTS]) else: line, = mp.pyplot.plot(data[0][:, iTS], data[1][:, iTS], 'k', alpha=0.3, label=labels[iTS]) lines.append(line) else: mask = np.array(range(nTS)) mask = np.delete(mask, special_idx) for iTS in special_idx: if no_dims > 2: line, = mp.pyplot.plot(data[0][:, iTS], data[1][:, iTS], data[2][:, iTS], 'r', alpha=0.7, label=labels[iTS]) else: line, = mp.pyplot.plot(data[0][:, iTS], data[1][:, iTS], 'r', alpha=0.7, label=labels[iTS]) lines.append(line) for iTS in mask: if no_dims > 2: line, = mp.pyplot.plot(data[0][:, iTS], data[1][:, iTS], data[2][:, iTS], 'k', alpha=0.3, label=labels[iTS]) else: line, = mp.pyplot.plot(data[0][:, iTS], data[1][:, iTS], 'k', alpha=0.3, label=labels[iTS]) lines.append(line) mp.pyplot.xlabel(ax_labels[0]) mp.pyplot.ylabel(ax_labels[1]) if no_dims > 2: mp.pyplot.ylabel(ax_labels[2]) if MOUSEHOOVER: #datacursor( lines[0], formatter='{label}'.format, bbox=dict(fc='white'), # arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) ) #hover=True HighlightingDataCursor(lines[0], formatter='{label}'.format, bbox=dict(fc='white'), arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5)) if save_flag: fig = mp.pyplot.gcf() if len(fig.get_label()) == 0: fig.set_label(figure_name) else: figure_name = fig.get_label().replace(" ", "_").replace("\t", "_") _save_figure(figure_dir=figure_dir, figure_format=figure_format, figure_name=figure_name) _check_show(show_flag)
""" An example of using a HighlightingDataCursor along with a custom formatter formatter function to highlight the selected artist and display its label. """ import numpy as np import matplotlib.pyplot as plt from mpldatacursor import HighlightingDataCursor x = np.linspace(0, 10, 100) fig, ax = plt.subplots() # Plot a series of lines with increasing slopes... lines = [] for i in range(1, 20): line, = ax.plot(x, i * x, label='$y = {}x$'.format(i)) lines.append(line) HighlightingDataCursor(lines) plt.show()
def plot_raster(time, data_dict, special_idx=None, title='Time Series', offset=3.0, show_flag=SHOW_FLAG, save_flag=False, figure_dir=FOLDER_FIGURES, figure_format=FIG_FORMAT, figure_name='TimeSeries', labels=None, figsize=LARGE_SIZE): mp.pyplot.figure(title, figsize=figsize) no_rows = len(data_dict) lines = [] for i, subtitle in enumerate(data_dict): ax = mp.pyplot.subplot(1, no_rows, i + 1) mp.pyplot.hold(True) if i == 0: mp.pyplot.title(title) data = data_dict[subtitle] data = zscore(data, axis=None) nTS = data.shape[1] if labels is None: labels = np.array(range(nTS)).astype(str) lines.append([]) if special_idx is None: for iTS in range(nTS): line, = mp.pyplot.plot(time, data[:, iTS] + offset * iTS, 'k', label=labels[iTS]) lines[i].append(line) else: mask = np.array(range(nTS)) mask = np.delete(mask, special_idx) for iTS in special_idx: line, = mp.pyplot.plot(time, data[:, iTS] + offset * iTS, 'r', label=labels[iTS]) lines[i].append(line) for iTS in mask: line, = mp.pyplot.plot(time, data[:, iTS] + offset * iTS, 'k', label=labels[iTS]) lines[i].append(line) mp.pyplot.ylabel(subtitle) ax.set_autoscalex_on(False) ax.set_xlim([time[0], time[-1]]) ax.invert_yaxis() if MOUSEHOOVER: #datacursor( lines[i], formatter='{label}'.format, bbox=dict(fc='white'), # arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) ) #hover=True HighlightingDataCursor(lines[i], formatter='{label}'.format, bbox=dict(fc='white'), arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5)) mp.pyplot.xlabel("Time (ms)") if save_flag: fig = mp.pyplot.gcf() if len(fig.get_label()) == 0: fig.set_label(figure_name) else: figure_name = fig.get_label().replace(" ", "_").replace("\t", "_") _save_figure(figure_dir=figure_dir, figure_format=figure_format, figure_name=figure_name) _check_show(show_flag)
def plot_nullclines_eq(hypothesis, region_labels, special_idx=None, x0ne=X0_DEF, x0e=X0_CR_DEF, figure_name='Nullclines and equilibria', show_flag=SHOW_FLAG, save_flag=False, figure_dir=FOLDER_FIGURES, figure_format=FIG_FORMAT, figsize=SMALL_SIZE): #Fixed parameters for all regions: y0 = np.mean(hypothesis.y0) Iext1 = np.mean(hypothesis.Iext1) x0cr = np.mean(hypothesis.x0cr) # Critical x0 r = np.mean(hypothesis.rx0) #x0ne = 0.0 # Default x0 for non epileptogenic regions #x0e = 1.0 # Default x0 for epileptogenic regions x1lin0 = np.mean( hypothesis.x1LIN ) # The point of the linear approximation (1st order Taylor expansion) #x1sq0 = np.mean(hypothesis.x1SQ) # The point of the square (parabolic) approximation (2nd order Taylor expansion) # Lines: x1 = np.expand_dims(np.linspace(-2.0, 2.0 / 3.0, 100), 1).T # x1 nullcline: zX1 = y0 + Iext1 - x1**3 - 2.0 * x1**2 # z nullcline: zZe = fz_lin_calc(x1, x0e, x0cr, r) # for epileptogenic regions zZne = fz_lin_calc(x1, x0ne, x0cr, r) # for non-epileptogenic regions # approximations: # linear: x1lin = np.expand_dims(np.linspace(-5.5 / 3.0, -3.5 / 3, 30), 1).T # x1 nullcline after linear approximation zX1lin = y0 + Iext1 + 2.0 * x1lin0 ** 3 + 2.0 * x1lin0 ** 2 - \ (3.0 * x1lin0 ** 2 + 4.0 * x1lin0) * x1lin # x1 nullcline after linear approximation # center point without approximation: #zlin0 = y0 + Iext1 - x1lin0 ** 3 - 2.0 * x1lin0 ** 2 # square: x1sq = np.expand_dims(np.linspace(-5.0 / 3, -1.0, 30), 1).T # x1 nullcline after parabolic approximation zX1sq = +2.0 * x1sq**2 + 16.0 * x1sq / 3.0 + y0 + Iext1 + 64.0 / 27.0 # center point (critical equilibrium point) without approximation: #zsq0 = y0 + Iext1 - x1sq0 ** 3 - 2.0 * x1sq0 ** 2 fig = mp.pyplot.figure(figure_name, figsize=figsize) x1null, = mp.pyplot.plot(x1[0, :], zX1[0, :], 'b-', label='x1 nullcline', linewidth=1) ax = mp.pyplot.gca() ax.axes.hold(True) zE1null, = mp.pyplot.plot(x1[0, :], zZe[0, :], 'g-', label='z nullcline at critical point (E=1)', linewidth=1) zE2null, = mp.pyplot.plot(x1[0, :], zZne[0, :], 'g--', label='z nullcline for E=0', linewidth=1) sq, = mp.pyplot.plot(x1sq[0, :], zX1sq[0, :], 'm--', label='Parabolic local approximation', linewidth=2) lin, = mp.pyplot.plot(x1lin[0, :], zX1lin[0, :], 'c--', label='Linear local approximation', linewidth=2) mp.pyplot.legend(handles=[x1null, zE1null, zE2null, lin, sq]) ii = range(hypothesis.n_regions) if special_idx != None: ii = np.delete(ii, special_idx) points = [] for i in ii: point, = mp.pyplot.plot(hypothesis.x1EQ[0, i], hypothesis.zEQ[0, i], '*', mfc='k', mec='k', ms=10, alpha=0.3, label=str(i) + '.' + region_labels[i]) points.append(point) if special_idx != None: for i in special_idx: point, = mp.pyplot.plot(hypothesis.x1EQ[0, i], hypothesis.zEQ[0, i], '*', mfc='r', mec='r', ms=10, alpha=0.8, label=str(i) + '.' + region_labels[i]) points.append(point) #ax.plot(x1lin0, zlin0, '*', mfc='r', mec='r', ms=10) #ax.axes.text(x1lin0 - 0.1, zlin0 + 0.2, 'E=0.0', fontsize=10, color='r') #ax.plot(x1sq0, zsq0, '*', mfc='m', mec='m', ms=10) #ax.axes.text(x1sq0, zsq0 - 0.2, 'E=1.0', fontsize=10, color='m') ax.set_title( 'Equilibria, nullclines and Taylor series approximations \n at the x1-z phase plane of the 2D Epileptor for x1<0' ) ax.axes.autoscale(tight=True) ax.axes.set_xlabel('x1') ax.axes.set_ylabel('z') ax.axes.set_ylim(2.0, 5.0) if MOUSEHOOVER: #datacursor( lines[0], formatter='{label}'.format, bbox=dict(fc='white'), # arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) ) #hover=True HighlightingDataCursor(points[0], formatter='{label}'.format, bbox=dict(fc='white'), arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5)) if save_flag: if len(fig.get_label()) == 0: fig.set_label(figure_name) else: figure_name = fig.get_label().replace(" ", "_").replace("\t", "_") _save_figure(figure_dir=figure_dir, figure_format=figure_format, figure_name=figure_name) _check_show(show_flag)
def plot_nullclines_eq(self, model_config, region_labels, special_idx, model, zmode, figure_name, show_flag=SHOW_FLAG, save_flag=SAVE_FLAG, figure_dir=FOLDER_FIGURES, figure_format=FIG_FORMAT): add_name = " " + "Epileptor " + model + " z-" + str(zmode) figure_name = figure_name + add_name # Fixed parameters for all regions: x1eq = model_config.x1EQ zeq = model_config.zEQ a = numpy.mean(model_config.a) b = numpy.mean(model_config.b) d = numpy.mean(model_config.d) yc = numpy.mean(model_config.yc) Iext1 = numpy.mean(model_config.Iext1) slope = numpy.mean(model_config.slope) # The point of the linear approximation (1st order Taylor expansion) x1LIN = def_x1lin(X1_DEF, X1_EQ_CR_DEF, len(region_labels)) x1SQ = X1_EQ_CR_DEF x1lin0 = numpy.mean(x1LIN) # The point of the square (parabolic) approximation (2nd order Taylor expansion) x1sq0 = numpy.mean(x1SQ) # Lines: # x1 nullcline: x1 = numpy.linspace(-2.0, 2.0, 100) y1 = calc_eq_y1(x1, yc, d=d) # z nullcine zX1 = calc_fx1( x1, z=0, y1=y1, Iext1=Iext1, slope=slope, a=a, b=b, d=d, tau1=1.0, x1_neg=None, model=model, x2=0.0, ) # yc + Iext1 - x1 ** 3 - 2.0 * x1 ** 2 # approximations: # linear: x1lin = numpy.linspace(-5.5 / 3.0, -3.5 / 3, 30) # x1 nullcline after linear approximation zX1lin = calc_fx1_2d_taylor( x1lin, x1lin0, z=0, y1=yc, Iext1=Iext1, slope=slope, a=a, b=b, d=d, tau1=1.0, x1_neg=None, order=2) # yc + Iext1 + 2.0 * x1lin0 ** 3 + 2.0 * x1lin0 ** 2 - \ # (3.0 * x1lin0 ** 2 + 4.0 * x1lin0) * x1lin # x1 nullcline after linear approximation # center point without approximation: # zlin0 = yc + Iext1 - x1lin0 ** 3 - 2.0 * x1lin0 ** 2 # square: x1sq = numpy.linspace(-5.0 / 3, -1.0, 30) # x1 nullcline after parabolic approximation zX1sq = calc_fx1_2d_taylor( x1sq, x1sq0, z=0, y1=yc, Iext1=Iext1, slope=slope, a=a, b=b, d=d, tau1=1.0, x1_neg=None, order=3, shape=x1sq.shape ) # + 2.0 * x1sq ** 2 + 16.0 * x1sq / 3.0 + yc + Iext1 + 64.0 / 27.0 # center point (critical equilibrium point) without approximation: # zsq0 = yc + Iext1 - x1sq0 ** 3 - 2.0 * x1sq0 ** 2 x0e = calc_x0_val__to_model_x0(X0_CR_DEF, yc, Iext1, a=a, b=b, d=d, zmode=zmode) x0ne = calc_x0_val__to_model_x0(X0_DEF, yc, Iext1, a=a, b=b, d=d, zmode=zmode) # z nullcline: zZe = calc_fz(x1, z=0.0, x0=x0e, tau1=1.0, tau0=1.0, zmode=zmode) # for epileptogenic regions zZne = calc_fz(x1, z=0.0, x0=x0ne, tau1=1.0, tau0=1.0, zmode=zmode) # for non-epileptogenic regions fig = pyplot.figure(figure_name, figsize=FIG_SIZE) x1null, = pyplot.plot(x1, zX1, 'b-', label='x1 nullcline', linewidth=1) ax = pyplot.gca() ax.axes.hold(True) zE1null, = pyplot.plot( x1, zZe, 'g-', label='z nullcline at critical point (e_values=1)', linewidth=1) zE2null, = pyplot.plot(x1, zZne, 'g--', label='z nullcline for e_values=0', linewidth=1) sq, = pyplot.plot(x1sq, zX1sq, 'm--', label='Parabolic local approximation', linewidth=2) lin, = pyplot.plot(x1lin, zX1lin, 'c--', label='Linear local approximation', linewidth=2) pyplot.legend(handles=[x1null, zE1null, zE2null, lin, sq]) ii = range(len(region_labels)) if special_idx is None: ii = numpy.delete(ii, special_idx) points = [] for i in ii: point, = pyplot.plot(x1eq[i], zeq[i], '*', mfc='k', mec='k', ms=10, alpha=0.3, label=str(i) + '.' + region_labels[i]) points.append(point) if special_idx is None: for i in special_idx: point, = pyplot.plot(x1eq[i], zeq[i], '*', mfc='r', mec='r', ms=10, alpha=0.8, label=str(i) + '.' + region_labels[i]) points.append(point) # ax.plot(x1lin0, zlin0, '*', mfc='r', mec='r', ms=10) # ax.axes.text(x1lin0 - 0.1, zlin0 + 0.2, 'e_values=0.0', fontsize=10, color='r') # ax.plot(x1sq0, zsq0, '*', mfc='m', mec='m', ms=10) # ax.axes.text(x1sq0, zsq0 - 0.2, 'e_values=1.0', fontsize=10, color='m') if model == "2d": ax.set_title( "Equilibria, nullclines and Taylor series approximations \n at the x1-z phase plane of the" + add_name + " for x1<0") else: ax.set_title( "Equilibria, nullclines at the x1-z phase plane of the" + add_name + " for x1<0") ax.axes.autoscale(tight=True) ax.axes.set_xlabel('x1') ax.axes.set_ylabel('z') if MOUSEHOOVER: # datacursor( lines[0], formatter='{label}'.format, bbox=dict(fc='white'), # arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) ) #hover=True HighlightingDataCursor(points[0], formatter='{label}'.format, bbox=dict(fc='white'), arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5)) if len(fig.get_label()) == 0: fig.set_label(figure_name) else: figure_name = fig.get_label().replace(": ", "_").replace( " ", "_").replace("\t", "_") save_figure(save_flag, figure_dir=figure_dir, figure_format=figure_format, figure_name=figure_name) check_show(show_flag)
def plotter(df, title=False, kind='line', x_label=None, y_label=None, style='ggplot', figsize=(8, 4), save=False, legend_pos='best', reverse_legend='guess', num_to_plot=7, tex='try', colours='default', cumulative=False, pie_legend=True, partial_pie=False, show_totals=False, transparent=False, output_format='png', interactive=False, black_and_white=False, show_p_val=False, indices=False, transpose=False, rot=False, **kwargs): """Visualise corpus interrogations. :param title: A title for the plot :type title: str :param df: Data to be plotted :type df: Pandas DataFrame :param x_label: A label for the x axis :type x_label: str :param y_label: A label for the y axis :type y_label: str :param kind: The kind of chart to make :type kind: str ('line'/'bar'/'barh'/'pie'/'area') :param style: Visual theme of plot :type style: str ('ggplot'/'bmh'/'fivethirtyeight'/'seaborn-talk'/etc) :param figsize: Size of plot :type figsize: tuple (int, int) :param save: If bool, save with *title* as name; if str, use str as name :type save: bool/str :param legend_pos: Where to place legend :type legend_pos: str ('upper right'/'outside right'/etc) :param reverse_legend: Reverse the order of the legend :type reverse_legend: bool :param num_to_plot: How many columns to plot :type num_to_plot: int/'all' :param tex: Use TeX to draw plot text :type tex: bool :param colours: Colourmap for lines/bars/slices :type colours: str :param cumulative: Plot values cumulatively :type cumulative: bool :param pie_legend: Show a legend for pie chart :type pie_legend: bool :param partial_pie: Allow plotting of pie slices only :type partial_pie: bool :param show_totals: Print sums in plot where possible :type show_totals: str -- 'legend'/'plot'/'both' :param transparent: Transparent .png background :type transparent: bool :param output_format: File format for saved image :type output_format: str -- 'png'/'pdf' :param black_and_white: Create black and white line styles :type black_and_white: bool :param show_p_val: Attempt to print p values in legend if contained in df :type show_p_val: bool :param indices: To use when plotting "distance from root" :type indices: bool :param stacked: When making bar chart, stack bars on top of one another :type stacked: str :param filled: For area and bar charts, make every column sum to 100 :type filled: str :param legend: Show a legend :type legend: bool :param rot: Rotate x axis ticks by *rot* degrees :type rot: int :param subplots: Plot each column separately :type subplots: bool :param layout: Grid shape to use when *subplots* is True :type layout: tuple -- (int, int) :param interactive: Experimental interactive options :type interactive: list -- [1, 2, 3] :returns: matplotlib figure """ import corpkit import os try: from IPython.utils.shimmodule import ShimWarning import warnings warnings.simplefilter('ignore', ShimWarning) except: pass kwargs['rot'] = rot xtickspan = kwargs.pop('xtickspan', False) import matplotlib as mpl from matplotlib import rc # prefer seaborn plotting try: import seaborn as sns except ImportError: pass except AttributeError: pass if interactive: import matplotlib.pyplot as plt, mpld3 else: import matplotlib.pyplot as plt import matplotlib.ticker as ticker import pandas from pandas import DataFrame, Series from time import localtime, strftime from process import checkstack if interactive: import mpld3 import collections from mpld3 import plugins, utils from plugins import InteractiveLegendPlugin, HighlightLines have_mpldc = False try: from mpldatacursor import datacursor, HighlightingDataCursor have_mpldc = True except ImportError: pass # check what environment we're in tk = checkstack('tkinter') running_python_tex = checkstack('pythontex') running_spider = checkstack('spyder') if not title: title = '' def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): """remove extreme values from colourmap --- no pure white""" import matplotlib.colors as colors import numpy as np new_cmap = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))) return new_cmap def get_savename(imagefolder, save=False, title=False, ext='png'): """Come up with the savename for the image.""" import os from corpkit.process import urlify # name as if not ext.startswith('.'): ext = '.' + ext if isinstance(save, STRINGTYPE): savename = os.path.join(imagefolder, (urlify(save) + ext)) #this 'else' is redundant now that title is obligatory else: if title: filename = urlify(title) + ext savename = os.path.join(imagefolder, filename) # remove duplicated ext if savename.endswith('%s%s' % (ext, ext)): savename = savename.replace('%s%s' % (ext, ext), ext, 1) return savename def rename_data_with_total(dataframe, was_series=False, using_tex=False, absolutes=True): """adds totals (abs, rel, keyness) to entry name strings""" if was_series: where_the_words_are = dataframe.index else: where_the_words_are = dataframe.columns the_labs = [] for w in list(where_the_words_are): if not absolutes: if was_series: perc = dataframe.T[w][0] else: the_labs.append(w) continue if using_tex: the_labs.append('%s (%.2f\%%)' % (w, perc)) else: the_labs.append('%s (%.2f %%)' % (w, perc)) else: if was_series: score = dataframe.T[w].sum() else: score = dataframe[w].sum() if using_tex: the_labs.append('%s (n=%d)' % (w, score)) else: the_labs.append('%s (n=%d)' % (w, score)) if not was_series: dataframe.columns = the_labs else: vals = list(dataframe[list(dataframe.columns)[0]].values) dataframe = pandas.DataFrame(vals, index=the_labs) dataframe.columns = ['Total'] return dataframe def auto_explode(dataframe, tinput, was_series=False, num_to_plot=7): """give me a list of strings and i'll output explode option""" output = [0 for s in range(num_to_plot)] if was_series: l = list(dataframe.index) else: l = list(dataframe.columns) if isinstance(tinput, (STRINGTYPE, int)): tinput = [tinput] if isinstance(tinput, list): for i in tinput: if isinstance(i, STRINGTYPE): index = l.index(i) else: index = i output[index] = 0.1 return output # get a few options from kwargs sbplt = kwargs.get('subplots', False) show_grid = kwargs.pop('grid', True) the_rotation = kwargs.get('rot', False) dragmode = kwargs.pop('draggable', False) leg_frame = kwargs.pop('legend_frame', True) leg_alpha = kwargs.pop('legend_alpha', 0.8) # auto set num to plot based on layout lo = kwargs.get('layout', None) if lo: num_to_plot = lo[0] * lo[1] # todo: get this dynamically instead. styles = [ 'dark_background', 'bmh', 'grayscale', 'ggplot', 'fivethirtyeight', 'matplotlib', False, 'mpl-white' ] #if style not in styles: #raise ValueError('Style %s not found. Use %s' % (str(style), ', '.join(styles))) if style == 'mpl-white': try: sns.set_style("whitegrid") except: pass style = 'matplotlib' if kwargs.get('savepath'): mpl.rcParams['savefig.directory'] = kwargs.get('savepath') kwargs.pop('savepath', None) mpl.rcParams['savefig.bbox'] = 'tight' mpl.rcParams.update({'figure.autolayout': True}) # try to use tex # TO DO: # make some font kwargs here using_tex = False mpl.rcParams['font.family'] = 'sans-serif' mpl.rcParams['text.latex.unicode'] = True if tex == 'try' or tex is True: try: rc('text', usetex=True) rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) using_tex = True except: matplotlib.rc('font', family='sans-serif') matplotlib.rc('font', serif='Helvetica Neue') matplotlib.rc('text', usetex='false') rc('text', usetex=False) else: rc('text', usetex=False) if interactive: using_tex = False if show_totals is False: show_totals = 'none' # find out what kind of plot we're making, and enable # or disable interactive values if need be kwargs['kind'] = kind.lower() if interactive: if kwargs['kind'].startswith('bar'): interactive_types = [3] elif kwargs['kind'] == 'area': interactive_types = [2, 3] elif kwargs['kind'] == 'line': interactive_types = [2, 3] elif kwargs['kind'] == 'pie': interactive_types = None warnings.warn( 'Interactive plotting not yet available for pie plots.') else: interactive_types = [None] if interactive is False: interactive_types = [None] # find out if pie mode, add autopct format piemode = False if kind == 'pie': piemode = True # always the best spot for pie #if legend_pos == 'best': #legend_pos = 'lower left' if show_totals.endswith('plot') or show_totals.endswith('both'): kwargs['pctdistance'] = 0.6 if using_tex: kwargs['autopct'] = r'%1.1f\%%' else: kwargs['autopct'] = '%1.1f%%' # copy data, make series into df dataframe = df.copy() if kind == 'heatmap': try: dataframe = dataframe.T except: pass was_series = False if isinstance(dataframe, Series): was_series = True if not cumulative: dataframe = DataFrame(dataframe) else: dataframe = DataFrame(dataframe.cumsum()) else: # don't know if this is much good. if transpose: dataframe = dataframe.T if cumulative: dataframe = DataFrame(dataframe.cumsum()) if len(list(dataframe.columns)) == 1: was_series = True # attempt to convert x axis to ints: #try: # dataframe.index = [int(i) for i in list(dataframe.index)] #except: # pass # remove totals and tkinter order if not was_series: for name, ax in zip(['Total'] * 2 + ['tkintertable-order'] * 2, [0, 1, 0, 1]): try: dataframe = dataframe.drop(name, axis=ax, errors='ignore') except: pass try: dataframe = dataframe.drop('tkintertable-order', errors='ignore') except: pass try: dataframe = dataframe.drop('tkintertable-order', axis=1, errors='ignore') except: pass # look at columns to see if all can be ints, in which case, set up figure # for depnumming if not was_series: if indices == 'guess': def isint(x): try: a = float(x) b = int(a) except (ValueError, OverflowError): return False else: return a == b if all([isint(x) is True for x in list(dataframe.columns)]): indices = True else: indices = False # if depnumming, plot all, transpose, and rename axes if indices is True: num_to_plot = 'all' dataframe = dataframe.T if y_label is None: y_label = 'Percentage of all matches' if x_label is None: x_label = '' # set backend? output_formats = [ 'svgz', 'ps', 'emf', 'rgba', 'raw', 'pdf', 'svg', 'eps', 'png', 'pgf' ] if output_format not in output_formats: raise ValueError('%s output format not recognised. Must be: %s' % (output_format, ', '.join(output_formats))) # don't know if these are necessary if 'pdf' in output_format: plt.switch_backend(output_format) if 'pgf' in output_format: plt.switch_backend(output_format) if num_to_plot == 'all': if was_series: if not piemode: num_to_plot = len(dataframe) else: num_to_plot = len(dataframe) else: if not piemode: num_to_plot = len(list(dataframe.columns)) else: num_to_plot = len(dataframe.index) # explode pie, or remove if not piemode if piemode and not sbplt and kwargs.get('explode'): kwargs['explode'] = auto_explode(dataframe, kwargs['explode'], was_series=was_series, num_to_plot=num_to_plot) else: kwargs.pop('explode', None) legend = kwargs.get('legend', True) #cut data short plotting_a_totals_column = False if was_series: if list(dataframe.columns)[0] != 'Total': try: can_be_ints = [int(x) for x in list(dataframe.index)] num_to_plot = len(dataframe) except: dataframe = dataframe[:num_to_plot] elif list(dataframe.columns)[0] == 'Total': plotting_a_totals_column = True if not 'legend' in kwargs: legend = False num_to_plot = len(dataframe) else: if transpose: dataframe = dataframe.head(num_to_plot) else: dataframe = dataframe.T.head(num_to_plot).T # remove stats fields, put p in entry text, etc. statfields = ['slope', 'intercept', 'r', 'p', 'stderr'] try: dataframe = dataframe.drop(statfields, axis=1, errors='ignore') except: pass try: dataframe.ix['p'] there_are_p_vals = True except: there_are_p_vals = False if show_p_val: if there_are_p_vals: newnames = [] for col in list(dataframe.columns): pval = dataframe[col]['p'] def p_string_formatter(val): if val < 0.001: if not using_tex: return 'p < 0.001' else: return r'p $<$ 0.001' else: return 'p = %s' % format(val, '.3f') pstr = p_string_formatter(pval) newname = '%s (%s)' % (col, pstr) newnames.append(newname) dataframe.columns = newnames dataframe.drop(statfields, axis=0, inplace=True, errors='ignore') else: warnings.warn( 'No p-values calculated to show.\n\nUse keep_stats kwarg while editing to generate these values.' ) else: if there_are_p_vals: dataframe.drop(statfields, axis=0, inplace=True, errors='ignore') # make and set y label absolutes = True if isinstance(dataframe, DataFrame): try: if not all([s.is_integer() for s in dataframe.iloc[0, :].values]): absolutes = False except: pass else: if not all([s.is_integer() for s in dataframe.values]): absolutes = False ########################################## ################ COLOURS ################# ########################################## # set defaults, with nothing for heatmap yet if colours is True or colours == 'default' or colours == 'Default': if kind != 'heatmap': colours = 'viridis' else: colours = 'default' # assume it's a single color, unless string denoting map cmap_or_c = 'color' if isinstance(colours, str): cmap_or_c = 'colormap' from matplotlib.colors import LinearSegmentedColormap if isinstance(colours, LinearSegmentedColormap): cmap_or_c = 'colormap' # for heatmaps, it's always a colormap if kind == 'heatmap': cmap_or_c = 'cmap' # if it's a defaulty string, set accordingly if isinstance(colours, str): if colours.lower().startswith('diverg'): colours = sns.diverging_palette(10, 133, as_cmap=True) # if default not set, do diverge for any df with a number < 0 elif colours.lower() == 'default': mn = dataframe.min() if isinstance(mn, Series): mn = mn.min() if mn < 0: colours = sns.diverging_palette(10, 133, as_cmap=True) else: colours = sns.light_palette("green", as_cmap=True) if 'seaborn' not in style: kwargs[cmap_or_c] = colours #if not was_series: # if kind in ['pie', 'line', 'area']: # if colours and not plotting_a_totals_column: # kwargs[cmap_or_c] = colours # else: # if colours: # kwargs[cmap_or_c] = colours #if piemode: # if num_to_plot > 0: # kwargs[cmap_or_c] = colours # else: # if num_to_plot > 0: # kwargs[cmap_or_c] = colours # multicoloured bar charts #if colours and cmap_or_c == 'colormap': # if kind.startswith('bar'): # if len(list(dataframe.columns)) == 1: # if not black_and_white: # import numpy as np # the_range = np.linspace(0, 1, num_to_plot) # middle = len(the_range) / 2 # try: # cmap = plt.get_cmap(colours) # kwargs[cmap_or_c] = [cmap(n) for n in the_range][middle] # except ValueError: # kwargs[cmap_or_c] = colours # # make a bar width ... ? ... # #kwargs['width'] = (figsize[0] / float(num_to_plot)) / 1.5 # reversing legend option if reverse_legend is True: rev_leg = True elif reverse_legend is False: rev_leg = False # show legend or don't, guess whether to reverse based on kind if kind in ['bar', 'barh', 'area', 'line', 'pie']: if was_series: legend = False if kind == 'pie': if pie_legend: legend = True else: legend = False if kind in ['barh', 'area']: if reverse_legend == 'guess': rev_leg = True if not 'rev_leg' in locals(): rev_leg = False # the default legend placement if legend_pos is True: legend_pos = 'best' # cut dataframe if just_totals try: tst = dataframe['Combined total'] dataframe = dataframe.head(num_to_plot) except: pass # no title for subplots because ugly, if title and not sbplt: kwargs['title'] = title # no interactive subplots yet: if sbplt and interactive: import warnings interactive = False warnings.warn('No interactive subplots yet, sorry.') return # not using pandas for labels or legend anymore. #kwargs['labels'] = None #kwargs['legend'] = False if legend: if num_to_plot > 6: if not kwargs.get('ncol'): kwargs['ncol'] = num_to_plot // 7 # kwarg options go in leg_options leg_options = { 'framealpha': leg_alpha, 'shadow': kwargs.get('shadow', False), 'ncol': kwargs.pop('ncol', 1) } # determine legend position based on this dict if legend_pos: possible = { 'best': 0, 'upper right': 1, 'upper left': 2, 'lower left': 3, 'lower right': 4, 'right': 5, 'center left': 6, 'center right': 7, 'lower center': 8, 'upper center': 9, 'center': 10, 'o r': 2, 'outside right': 2, 'outside upper right': 2, 'outside center right': 'center left', 'outside lower right': 'lower left' } if isinstance(legend_pos, int): the_loc = legend_pos elif isinstance(legend_pos, str): try: the_loc = possible[legend_pos] except KeyError: raise KeyError( 'legend_pos value must be one of:\n%s\n or an int between 0-10.' % ', '.join(list(possible.keys()))) leg_options['loc'] = the_loc #weirdness needed for outside plot if legend_pos in ['o r', 'outside right', 'outside upper right']: leg_options['bbox_to_anchor'] = (1.02, 1) if legend_pos == 'outside center right': leg_options['bbox_to_anchor'] = (1.02, 0.5) if legend_pos == 'outside lower right': leg_options['loc'] == 'upper right' leg_options['bbox_to_anchor'] = (0.5, 0.5) # a bit of distance between legend and plot for outside legends if isinstance(legend_pos, str): if legend_pos.startswith('o'): leg_options['borderaxespad'] = 1 if not piemode: if show_totals.endswith('both') or show_totals.endswith('legend'): dataframe = rename_data_with_total(dataframe, was_series=was_series, using_tex=using_tex, absolutes=absolutes) else: if pie_legend: if show_totals.endswith('both') or show_totals.endswith('legend'): dataframe = rename_data_with_total(dataframe, was_series=was_series, using_tex=using_tex, absolutes=absolutes) if piemode: if partial_pie: dataframe = dataframe / 100.0 # some pie things if piemode: if not sbplt: kwargs['y'] = list(dataframe.columns)[0] def filler(df): pby = df.T.copy() for i in list(pby.columns): tot = pby[i].sum() pby[i] = pby[i] * 100.0 / tot return pby.T areamode = False if kind == 'area': areamode = True if legend is False: kwargs['legend'] = False # line highlighting option for interactive! if interactive: if 2 in interactive_types: if kind == 'line': kwargs['marker'] = ',' if not piemode: kwargs['alpha'] = 0.1 # convert dates --- works only in my current case! #if plotting_a_totals_column or not was_series: # try: # can_it_be_int = int(list(dataframe.index)[0]) # can_be_int = True # except: # can_be_int = False # if can_be_int: # if 1500 < int(list(dataframe.index)[0]): # if 2050 > int(list(dataframe.index)[0]): # n = pandas.PeriodIndex([d for d in list(dataframe.index)], freq='A') # dataframe = dataframe.set_index(n) if kwargs.get('filled'): if areamode or kind.startswith('bar'): dataframe = filler(dataframe) kwargs.pop('filled', None) MARKERSIZE = 4 COLORMAP = { 0: { 'marker': None, 'dash': (None, None) }, 1: { 'marker': None, 'dash': [5, 5] }, 2: { 'marker': "o", 'dash': (None, None) }, 3: { 'marker': None, 'dash': [1, 3] }, 4: { 'marker': "s", 'dash': [5, 2, 5, 2, 5, 10] }, 5: { 'marker': None, 'dash': [5, 3, 1, 2, 1, 10] }, 6: { 'marker': 'o', 'dash': (None, None) }, 7: { 'marker': None, 'dash': [5, 3, 1, 3] }, 8: { 'marker': "1", 'dash': [1, 3] }, 9: { 'marker': "*", 'dash': [5, 5] }, 10: { 'marker': "2", 'dash': [5, 2, 5, 2, 5, 10] }, 11: { 'marker': "s", 'dash': (None, None) } } HATCHES = { 0: { 'color': '#dfdfdf', 'hatch': "/" }, 1: { 'color': '#6f6f6f', 'hatch': "\\" }, 2: { 'color': 'b', 'hatch': "|" }, 3: { 'color': '#dfdfdf', 'hatch': "-" }, 4: { 'color': '#6f6f6f', 'hatch': "+" }, 5: { 'color': 'b', 'hatch': "x" } } if black_and_white: if kind == 'line': kwargs['linewidth'] = 1 cmap = plt.get_cmap('Greys') new_cmap = truncate_colormap(cmap, 0.25, 0.95) if kind == 'bar': # darker if just one entry if len(dataframe.columns) == 1: new_cmap = truncate_colormap(cmap, 0.70, 0.90) kwargs[cmap_or_c] = new_cmap # remove things from kwargs if heatmap if kind == 'heatmap': hmargs = { 'annot': kwargs.pop('annot', True), cmap_or_c: kwargs.pop(cmap_or_c, None), 'fmt': kwargs.pop('fmt', ".2f"), 'cbar': kwargs.pop('cbar', False) } for i in [ 'vmin', 'vmax', 'linewidths', 'linecolor', 'robust', 'center', 'cbar_kws', 'cbar_ax', 'square', 'mask', 'norm' ]: if i in kwargs.keys(): hmargs[i] = kwargs.pop(i, None) class dummy_context_mgr(): """a fake context for plotting without style perhaps made obsolete by 'classic' style in new mpl""" def __enter__(self): return None def __exit__(self, one, two, three): return False with plt.style.context( (style)) if style != 'matplotlib' else dummy_context_mgr(): kwargs.pop('filled', None) if not sbplt: # check if negative values, no stacked if so if areamode: if not kwargs.get('ax'): kwargs['legend'] = False if dataframe.applymap(lambda x: x < 0.0).any().any(): kwargs['stacked'] = False rev_leg = False if kind != 'heatmap': # turn off pie labels at the last minute if kind == 'pie' and pie_legend: kwargs['labels'] = None kwargs['autopct'] = '%.2f' if kind == 'pie': kwargs.pop('color', None) ax = dataframe.plot(figsize=figsize, **kwargs) else: fg = plt.figure(figsize=figsize) if title: plt.title(title) ax = kwargs.get('ax', plt.axes()) tmp = sns.heatmap(dataframe, ax=ax, **hmargs) ax.set_title(title) for item in tmp.get_yticklabels(): item.set_rotation(0) plt.close(fg) if areamode and not kwargs.get('ax'): handles, labels = plt.gca().get_legend_handles_labels() del handles del labels if x_label: ax.set_xlabel(x_label) if y_label: ax.set_ylabel(y_label) else: if not kwargs.get('layout'): plt.gcf().set_tight_layout(False) if kind != 'heatmap': ax = dataframe.plot(figsize=figsize, **kwargs) else: plt.figure(figsize=figsize) if title: plt.title(title) ax = plt.axes() sns.heatmap(dataframe, ax=ax, **hmargs) plt.xticks(rotation=0) plt.yticks(rotation=0) def rotate_degrees(rotation, labels): if rotation is None: if max(labels, key=len) > 6: return 45 else: return 0 elif rotation is False: return 0 elif rotation is True: return 45 else: return rotation if sbplt: if 'layout' not in kwargs: axes = [l for l in ax] else: axes = [] cols = [l for l in ax] for col in cols: for bit in col: axes.append(bit) for index, a in enumerate(axes): if xtickspan is not False: a.xaxis.set_major_locator( ticker.MultipleLocator(xtickspan)) labels = [item.get_text() for item in a.get_xticklabels()] rotation = rotate_degrees(the_rotation, labels) try: if the_rotation == 0: ax.set_xticklabels(labels, rotation=rotation, ha='center') else: ax.set_xticklabels(labels, rotation=rotation, ha='right') except AttributeError: pass else: if kind == 'heatmap': labels = [item.get_text() for item in ax.get_xticklabels()] rotation = rotate_degrees(the_rotation, labels) if the_rotation == 0: ax.set_xticklabels(labels, rotation=rotation, ha='center') else: ax.set_xticklabels(labels, rotation=rotation, ha='right') if transparent: plt.gcf().patch.set_facecolor('white') plt.gcf().patch.set_alpha(0) if black_and_white: if kind == 'line': # white background # change everything to black and white with interesting dashes and markers c = 0 for line in ax.get_lines(): line.set_color('black') #line.set_width(1) line.set_dashes(COLORMAP[c]['dash']) line.set_marker(COLORMAP[c]['marker']) line.set_markersize(MARKERSIZE) c += 1 if c == len(list(COLORMAP.keys())): c = 0 # draw legend with proper placement etc if legend: if not piemode and not sbplt and kind != 'heatmap': if 3 not in interactive_types: handles, labels = plt.gca().get_legend_handles_labels() # area doubles the handles and labels. this removes half: #if areamode: # handles = handles[-len(handles) / 2:] # labels = labels[-len(labels) / 2:] if rev_leg: handles = handles[::-1] labels = labels[::-1] if kwargs.get('ax'): lgd = plt.gca().legend(handles, labels, **leg_options) ax.get_legend().draw_frame(leg_frame) else: lgd = plt.legend(handles, labels, **leg_options) lgd.draw_frame(leg_frame) if interactive: # 1 = highlight lines # 2 = line labels # 3 = legend switches ax = plt.gca() # fails for piemode lines = ax.lines handles, labels = plt.gca().get_legend_handles_labels() if 1 in interactive_types: plugins.connect(plt.gcf(), HighlightLines(lines)) if 3 in interactive_types: plugins.connect( plt.gcf(), InteractiveLegendPlugin(lines, labels, alpha_unsel=0.0)) for i, l in enumerate(lines): y_vals = l.get_ydata() x_vals = l.get_xdata() x_vals = [str(x) for x in x_vals] if absolutes: ls = [ '%s (%s: %d)' % (labels[i], x_val, y_val) for x_val, y_val in zip(x_vals, y_vals) ] else: ls = [ '%s (%s: %.2f%%)' % (labels[i], x_val, y_val) for x_val, y_val in zip(x_vals, y_vals) ] if 2 in interactive_types: #if 'kind' in kwargs and kwargs['kind'] == 'area': tooltip_line = mpld3.plugins.LineLabelTooltip( lines[i], labels[i]) mpld3.plugins.connect(plt.gcf(), tooltip_line) #else: if kind == 'line': tooltip_point = mpld3.plugins.PointLabelTooltip(l, labels=ls) mpld3.plugins.connect(plt.gcf(), tooltip_point) if piemode: if not sbplt: plt.axis('equal') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # add x label # this could be revised now! # if time series period, it's year for now if isinstance(dataframe.index, pandas.tseries.period.PeriodIndex): x_label = 'Year' y_l = False if not absolutes: y_l = 'Percentage' else: y_l = 'Absolute frequency' # hacky: turn legend into subplot titles :) if sbplt: # title the big plot #plt.gca().suptitle(title, fontsize = 16) #plt.subplots_adjust(top=0.9) # get all axes if 'layout' not in kwargs: axes = [l for index, l in enumerate(ax)] else: axes = [] cols = [l for index, l in enumerate(ax)] for col in cols: for bit in col: axes.append(bit) # set subplot titles for index, a in enumerate(axes): try: titletext = list(dataframe.columns)[index] except: pass a.set_title(titletext) try: a.legend_.remove() except: pass #try: # from matplotlib.ticker import MaxNLocator # from corpkit.process import is_number # indx = list(dataframe.index) # if all([is_number(qq) for qq in indx]): # ax.get_xaxis().set_major_locator(MaxNLocator(integer=True)) #except: # pass # remove axis labels for pie plots if piemode: a.axes.get_xaxis().set_visible(False) a.axes.get_yaxis().set_visible(False) a.axis('equal') a.grid(b=show_grid) # add sums to bar graphs and pie graphs # doubled right now, no matter if not sbplt: # show grid ax.grid(b=show_grid) if kind.startswith('bar'): width = ax.containers[0][0].get_width() if was_series: the_y_limit = plt.ylim()[1] if show_totals.endswith('plot') or show_totals.endswith('both'): # make plot a bit higher if putting these totals on it plt.ylim([0, the_y_limit * 1.05]) for i, label in enumerate(list(dataframe.index)): if len(dataframe.ix[label]) == 1: score = dataframe.ix[label][0] else: if absolutes: score = dataframe.ix[label].sum() else: #import warnings #warnings.warn("It's not possible to determine total percentage from individual percentages.") continue if not absolutes: plt.annotate('%.2f' % score, (i, score), ha='center', va='bottom') else: plt.annotate(score, (i, score), ha='center', va='bottom') else: the_y_limit = plt.ylim()[1] if show_totals.endswith('plot') or show_totals.endswith('both'): for i, label in enumerate(list(dataframe.columns)): if len(dataframe[label]) == 1: score = dataframe[label][0] else: if absolutes: score = dataframe[label].sum() else: #import warnings #warnings.warn("It's not possible to determine total percentage from individual percentages.") continue if not absolutes: plt.annotate('%.2f' % score, (i, score), ha='center', va='bottom') else: plt.annotate(score, (i, score), ha='center', va='bottom') if not kwargs.get('layout') and not sbplt and not kwargs.get('ax'): plt.tight_layout() if kwargs.get('ax'): try: plt.gcf().set_tight_layout(False) except: pass try: plt.set_tight_layout(False) except: pass if save: if running_python_tex: imagefolder = '../images' else: imagefolder = 'images' savename = get_savename(imagefolder, save=save, title=title, ext=output_format) if not os.path.isdir(imagefolder): os.makedirs(imagefolder) # save image and get on with our lives if legend_pos.startswith('o') and not sbplt: plt.gcf().savefig(savename, dpi=150, bbox_extra_artists=(lgd, ), bbox_inches='tight', format=output_format) else: plt.gcf().savefig(savename, dpi=150, format=output_format) time = strftime("%H:%M:%S", localtime()) if os.path.isfile(savename): print('\n' + time + ": " + savename + " created.") else: raise ValueError("Error making %s." % savename) if dragmode: plt.legend().draggable() if sbplt: plt.subplots_adjust(right=.8) plt.subplots_adjust(left=.1) # add DataCursor to notebook backend if possible if have_mpldc: if kind == 'line': HighlightingDataCursor( plt.gca().get_lines(), highlight_width=4, highlight_color=False, formatter=lambda **kwargs: '%s: %s' % (kwargs['label'], "{0:.3f}".format(kwargs['y']))) else: datacursor(formatter=lambda **kwargs: '%s: %s' % (kwargs['label'], "{0:.3f}".format(kwargs['height']))) #if not interactive and not running_python_tex and not running_spider \ # and not tk: # plt.gcf().show() # return plt #elif running_spider or tk: # return plt if interactive: plt.subplots_adjust(right=.8) plt.subplots_adjust(left=.1) try: ax.legend_.remove() except: pass return mpld3.display() else: return plt
def plot_nullclines_eq(hypothesis, region_labels, special_idx=None, model="2d", zmode=numpy.array("lin"), x0ne=X0_DEF, x0e=X0_CR_DEF, figure_name='Nullclines and equilibria', show_flag=SHOW_FLAG, save_flag=False, figure_dir=FOLDER_FIGURES, figure_format=FIG_FORMAT, figsize=SMALL_SIZE): add_name = " " + "Epileptor " + model + " z-" + str(zmode) figure_name = hypothesis.name + " " + figure_name + add_name #Fixed parameters for all regions: x1eq = numpy.mean(hypothesis.x1EQ) yc = numpy.mean(hypothesis.yc) Iext1 = numpy.mean(hypothesis.Iext1) x0cr = numpy.mean(hypothesis.x0cr) # Critical x0 r = numpy.mean(hypothesis.rx0) # The point of the linear approximation (1st order Taylor expansion) x1lin0 = numpy.mean(hypothesis.x1LIN) # The point of the square (parabolic) approximation (2nd order Taylor expansion) x1sq0 = numpy.mean(hypothesis.x1SQ) if model != "2d" or zmode != numpy.array("lin"): x0cr, r = calc_x0cr_r(yc, Iext1, zmode=zmode, x1_rest=X1_DEF, x1_cr=X1_EQ_CR_DEF, x0def=X0_DEF, x0cr_def=X0_CR_DEF) # Lines: # x1 nullcline: x1 = numpy.linspace(-2.0, 2.0 / 3.0, 100) if model == "2d": y1 = yc b = -2.0 else: y1 = calc_eq_y1(x1, yc, d=5.0) b = 3.0 zX1 = calc_fx1(x1, z=0, y1=y1, Iext1=Iext1, x1_neg=None, model=model, b=b) # yc + Iext1 - x1 ** 3 - 2.0 * x1 ** 2 # approximations: # linear: x1lin = numpy.linspace(-5.5 / 3.0, -3.5 / 3, 30) # x1 nullcline after linear approximation zX1lin = calc_fx1_2d_taylor( x1lin, x1lin0, z=0, y1=yc, Iext1=Iext1, slope=0.0, a=1.0, b=-2.0, tau1=1.0, x1_neg=None, order=2) # yc + Iext1 + 2.0 * x1lin0 ** 3 + 2.0 * x1lin0 ** 2 - \ # (3.0 * x1lin0 ** 2 + 4.0 * x1lin0) * x1lin # x1 nullcline after linear approximation # center point without approximation: # zlin0 = yc + Iext1 - x1lin0 ** 3 - 2.0 * x1lin0 ** 2 # square: x1sq = numpy.linspace(-5.0 / 3, -1.0, 30) # x1 nullcline after parabolic approximation zX1sq = calc_fx1_2d_taylor( x1sq, x1sq0, z=0, y1=yc, Iext1=Iext1, slope=0.0, a=1.0, b=-2.0, tau1=1.0, x1_neg=None, order=3, shape=x1sq.shape ) # + 2.0 * x1sq ** 2 + 16.0 * x1sq / 3.0 + yc + Iext1 + 64.0 / 27.0 # center point (critical equilibrium point) without approximation: # zsq0 = yc + Iext1 - x1sq0 ** 3 - 2.0 * x1sq0 ** 2 if model == "2d": # z nullcline: zZe = calc_fz(x1, z=0.0, x0=x0e, x0cr=x0cr, r=r, zmode=zmode) # for epileptogenic regions zZne = calc_fz(x1, z=0.0, x0=x0ne, x0cr=x0cr, r=r, zmode=zmode) # for non-epileptogenic regions else: x0e_6d = calc_rescaled_x0(x0e, yc, Iext1, zmode=zmode) x0ne_6d = calc_rescaled_x0(x0ne, yc, Iext1, zmode=zmode) # z nullcline: zZe = calc_fz(x1, z=0.0, x0=x0e_6d, zmode=zmode, model="2d") # for epileptogenic regions zZne = calc_fz(x1, z=0.0, x0=x0ne_6d, zmode=zmode, model="2d") # for non-epileptogenic regions fig = mp.pyplot.figure(figure_name, figsize=figsize) x1null, = mp.pyplot.plot(x1, zX1, 'b-', label='x1 nullcline', linewidth=1) ax = mp.pyplot.gca() ax.axes.hold(True) zE1null, = mp.pyplot.plot(x1, zZe, 'g-', label='z nullcline at critical point (E=1)', linewidth=1) zE2null, = mp.pyplot.plot(x1, zZne, 'g--', label='z nullcline for E=0', linewidth=1) sq, = mp.pyplot.plot(x1sq, zX1sq, 'm--', label='Parabolic local approximation', linewidth=2) lin, = mp.pyplot.plot(x1lin, zX1lin, 'c--', label='Linear local approximation', linewidth=2) mp.pyplot.legend(handles=[x1null, zE1null, zE2null, lin, sq]) ii = range(hypothesis.n_regions) if special_idx is None: ii = numpy.delete(ii, special_idx) points = [] for i in ii: point, = mp.pyplot.plot(hypothesis.x1EQ[i], hypothesis.zEQ[i], '*', mfc='k', mec='k', ms=10, alpha=0.3, label=str(i) + '.' + region_labels[i]) points.append(point) if special_idx is None: for i in special_idx: point, = mp.pyplot.plot(hypothesis.x1EQ[i], hypothesis.zEQ[i], '*', mfc='r', mec='r', ms=10, alpha=0.8, label=str(i) + '.' + region_labels[i]) points.append(point) #ax.plot(x1lin0, zlin0, '*', mfc='r', mec='r', ms=10) #ax.axes.text(x1lin0 - 0.1, zlin0 + 0.2, 'E=0.0', fontsize=10, color='r') #ax.plot(x1sq0, zsq0, '*', mfc='m', mec='m', ms=10) #ax.axes.text(x1sq0, zsq0 - 0.2, 'E=1.0', fontsize=10, color='m') if model == "2d": ax.set_title( "Equilibria, nullclines and Taylor series approximations \n at the x1-z phase plane of the" + add_name + " for x1<0") else: ax.set_title("Equilibria, nullclines at the x1-z phase plane of the" + add_name + " for x1<0") ax.axes.autoscale(tight=True) ax.axes.set_xlabel('x1') ax.axes.set_ylabel('z') ax.axes.set_ylim(2.0, 5.0) if MOUSEHOOVER: #datacursor( lines[0], formatter='{label}'.format, bbox=dict(fc='white'), # arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) ) #hover=True HighlightingDataCursor(points[0], formatter='{label}'.format, bbox=dict(fc='white'), arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5)) if save_flag: if len(fig.get_label()) == 0: fig.set_label(figure_name) else: figure_name = fig.get_label().replace(" ", "_").replace("\t", "_") _save_figure(figure_dir=figure_dir, figure_format=figure_format, figure_name=figure_name) _check_show(show_flag)