Exemple #1
0
    def __init__(self, axes, **kwargs):
        # Use the first plotted Line2D in each axes
        artists = [ax.lines[0] for ax in axes]

        kwargs['display'] = 'single'
        HighlightingDataCursor.__init__(self, artists, **kwargs)
        self.highlights = [self.create_highlight(artist) for artist in artists]
        plt.setp(self.highlights, visible=False)
Exemple #2
0
def plot_trajectories(data_dict,
                      special_idx=None,
                      title='State space trajectories',
                      show_flag=SHOW_FLAG,
                      save_flag=False,
                      figure_dir=FOLDER_FIGURES,
                      figure_format=FIG_FORMAT,
                      figure_name='Trajectories',
                      labels=None,
                      figsize=LARGE_SIZE):

    mp.pyplot.figure(title, figsize=figsize)
    ax = mp.pyplot.subplot(111)
    mp.pyplot.hold(True)
    no_dims = len(data_dict)
    if no_dims > 2:
        from mpl_toolkits.mplot3d import Axes3D
        ax = mp.pyplot.subplot(111, projection='3d')
    else:
        ax = mp.pyplot.subplot(111)
    lines = []
    ax_labels = []
    data = []
    for i, var in enumerate(data_dict):
        if i == 0:
            mp.pyplot.title(title)
        ax_labels.append(var)
        data.append(data_dict[var])
    nTS = data[0].shape[1]
    if labels is None:
        labels = np.array(range(nTS)).astype(str)
    lines.append([])
    if special_idx is None:
        for iTS in range(nTS):
            if no_dims > 2:
                line, = mp.pyplot.plot(data[0][:, iTS],
                                       data[1][:, iTS],
                                       data[2][:, iTS],
                                       'k',
                                       alpha=0.3,
                                       label=labels[iTS])
            else:
                line, = mp.pyplot.plot(data[0][:, iTS],
                                       data[1][:, iTS],
                                       'k',
                                       alpha=0.3,
                                       label=labels[iTS])
            lines.append(line)
    else:
        mask = np.array(range(nTS))
        mask = np.delete(mask, special_idx)
        for iTS in special_idx:
            if no_dims > 2:
                line, = mp.pyplot.plot(data[0][:, iTS],
                                       data[1][:, iTS],
                                       data[2][:, iTS],
                                       'r',
                                       alpha=0.7,
                                       label=labels[iTS])
            else:
                line, = mp.pyplot.plot(data[0][:, iTS],
                                       data[1][:, iTS],
                                       'r',
                                       alpha=0.7,
                                       label=labels[iTS])
            lines.append(line)
        for iTS in mask:
            if no_dims > 2:
                line, = mp.pyplot.plot(data[0][:, iTS],
                                       data[1][:, iTS],
                                       data[2][:, iTS],
                                       'k',
                                       alpha=0.3,
                                       label=labels[iTS])
            else:
                line, = mp.pyplot.plot(data[0][:, iTS],
                                       data[1][:, iTS],
                                       'k',
                                       alpha=0.3,
                                       label=labels[iTS])
            lines.append(line)
    mp.pyplot.xlabel(ax_labels[0])
    mp.pyplot.ylabel(ax_labels[1])
    if no_dims > 2:
        mp.pyplot.ylabel(ax_labels[2])
    if MOUSEHOOVER:
        #datacursor( lines[0], formatter='{label}'.format, bbox=dict(fc='white'),
        #           arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) )    #hover=True
        HighlightingDataCursor(lines[0],
                               formatter='{label}'.format,
                               bbox=dict(fc='white'),
                               arrowprops=dict(arrowstyle='simple',
                                               fc='white',
                                               alpha=0.5))

    if save_flag:
        fig = mp.pyplot.gcf()
        if len(fig.get_label()) == 0:
            fig.set_label(figure_name)
        else:
            figure_name = fig.get_label().replace(" ", "_").replace("\t", "_")
        _save_figure(figure_dir=figure_dir,
                     figure_format=figure_format,
                     figure_name=figure_name)
    _check_show(show_flag)
"""
An example of using a HighlightingDataCursor along with a custom formatter
formatter function to highlight the selected artist and display its label.
"""
import numpy as np
import matplotlib.pyplot as plt
from mpldatacursor import HighlightingDataCursor

x = np.linspace(0, 10, 100)

fig, ax = plt.subplots()

# Plot a series of lines with increasing slopes...
lines = []
for i in range(1, 20):
    line, = ax.plot(x, i * x, label='$y = {}x$'.format(i))
    lines.append(line)

HighlightingDataCursor(lines)

plt.show()
Exemple #4
0
def plot_raster(time,
                data_dict,
                special_idx=None,
                title='Time Series',
                offset=3.0,
                show_flag=SHOW_FLAG,
                save_flag=False,
                figure_dir=FOLDER_FIGURES,
                figure_format=FIG_FORMAT,
                figure_name='TimeSeries',
                labels=None,
                figsize=LARGE_SIZE):

    mp.pyplot.figure(title, figsize=figsize)
    no_rows = len(data_dict)
    lines = []
    for i, subtitle in enumerate(data_dict):
        ax = mp.pyplot.subplot(1, no_rows, i + 1)
        mp.pyplot.hold(True)
        if i == 0:
            mp.pyplot.title(title)
        data = data_dict[subtitle]
        data = zscore(data, axis=None)
        nTS = data.shape[1]
        if labels is None:
            labels = np.array(range(nTS)).astype(str)
        lines.append([])
        if special_idx is None:
            for iTS in range(nTS):
                line, = mp.pyplot.plot(time,
                                       data[:, iTS] + offset * iTS,
                                       'k',
                                       label=labels[iTS])
                lines[i].append(line)
        else:
            mask = np.array(range(nTS))
            mask = np.delete(mask, special_idx)
            for iTS in special_idx:
                line, = mp.pyplot.plot(time,
                                       data[:, iTS] + offset * iTS,
                                       'r',
                                       label=labels[iTS])
                lines[i].append(line)
            for iTS in mask:
                line, = mp.pyplot.plot(time,
                                       data[:, iTS] + offset * iTS,
                                       'k',
                                       label=labels[iTS])
                lines[i].append(line)
        mp.pyplot.ylabel(subtitle)
        ax.set_autoscalex_on(False)
        ax.set_xlim([time[0], time[-1]])
        ax.invert_yaxis()
        if MOUSEHOOVER:
            #datacursor( lines[i], formatter='{label}'.format, bbox=dict(fc='white'),
            #           arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) )    #hover=True
            HighlightingDataCursor(lines[i],
                                   formatter='{label}'.format,
                                   bbox=dict(fc='white'),
                                   arrowprops=dict(arrowstyle='simple',
                                                   fc='white',
                                                   alpha=0.5))
    mp.pyplot.xlabel("Time (ms)")

    if save_flag:
        fig = mp.pyplot.gcf()
        if len(fig.get_label()) == 0:
            fig.set_label(figure_name)
        else:
            figure_name = fig.get_label().replace(" ", "_").replace("\t", "_")
        _save_figure(figure_dir=figure_dir,
                     figure_format=figure_format,
                     figure_name=figure_name)
    _check_show(show_flag)
Exemple #5
0
def plot_nullclines_eq(hypothesis,
                       region_labels,
                       special_idx=None,
                       x0ne=X0_DEF,
                       x0e=X0_CR_DEF,
                       figure_name='Nullclines and equilibria',
                       show_flag=SHOW_FLAG,
                       save_flag=False,
                       figure_dir=FOLDER_FIGURES,
                       figure_format=FIG_FORMAT,
                       figsize=SMALL_SIZE):

    #Fixed parameters for all regions:
    y0 = np.mean(hypothesis.y0)
    Iext1 = np.mean(hypothesis.Iext1)
    x0cr = np.mean(hypothesis.x0cr)  # Critical x0
    r = np.mean(hypothesis.rx0)
    #x0ne = 0.0  # Default x0 for non epileptogenic regions
    #x0e = 1.0  # Default x0 for epileptogenic regions
    x1lin0 = np.mean(
        hypothesis.x1LIN
    )  # The point of the linear approximation (1st order Taylor expansion)
    #x1sq0 = np.mean(hypothesis.x1SQ)  # The point of the square (parabolic) approximation (2nd order Taylor expansion)

    # Lines:
    x1 = np.expand_dims(np.linspace(-2.0, 2.0 / 3.0, 100), 1).T
    # x1 nullcline:
    zX1 = y0 + Iext1 - x1**3 - 2.0 * x1**2
    # z nullcline:
    zZe = fz_lin_calc(x1, x0e, x0cr, r)  # for epileptogenic regions
    zZne = fz_lin_calc(x1, x0ne, x0cr, r)  # for non-epileptogenic regions
    # approximations:
    # linear:
    x1lin = np.expand_dims(np.linspace(-5.5 / 3.0, -3.5 / 3, 30), 1).T
    # x1 nullcline after linear approximation
    zX1lin = y0 + Iext1 + 2.0 * x1lin0 ** 3 + 2.0 * x1lin0 ** 2 - \
             (3.0 * x1lin0 ** 2 + 4.0 * x1lin0) * x1lin  # x1 nullcline after linear approximation
    # center point without approximation:
    #zlin0 = y0 + Iext1 - x1lin0 ** 3 - 2.0 * x1lin0 ** 2
    # square:
    x1sq = np.expand_dims(np.linspace(-5.0 / 3, -1.0, 30), 1).T
    # x1 nullcline after parabolic approximation
    zX1sq = +2.0 * x1sq**2 + 16.0 * x1sq / 3.0 + y0 + Iext1 + 64.0 / 27.0
    # center point (critical equilibrium point) without approximation:
    #zsq0 = y0 + Iext1 - x1sq0 ** 3 - 2.0 * x1sq0 ** 2

    fig = mp.pyplot.figure(figure_name, figsize=figsize)
    x1null, = mp.pyplot.plot(x1[0, :],
                             zX1[0, :],
                             'b-',
                             label='x1 nullcline',
                             linewidth=1)
    ax = mp.pyplot.gca()
    ax.axes.hold(True)
    zE1null, = mp.pyplot.plot(x1[0, :],
                              zZe[0, :],
                              'g-',
                              label='z nullcline at critical point (E=1)',
                              linewidth=1)
    zE2null, = mp.pyplot.plot(x1[0, :],
                              zZne[0, :],
                              'g--',
                              label='z nullcline for E=0',
                              linewidth=1)
    sq, = mp.pyplot.plot(x1sq[0, :],
                         zX1sq[0, :],
                         'm--',
                         label='Parabolic local approximation',
                         linewidth=2)
    lin, = mp.pyplot.plot(x1lin[0, :],
                          zX1lin[0, :],
                          'c--',
                          label='Linear local approximation',
                          linewidth=2)
    mp.pyplot.legend(handles=[x1null, zE1null, zE2null, lin, sq])

    ii = range(hypothesis.n_regions)
    if special_idx != None:
        ii = np.delete(ii, special_idx)

    points = []
    for i in ii:
        point, = mp.pyplot.plot(hypothesis.x1EQ[0, i],
                                hypothesis.zEQ[0, i],
                                '*',
                                mfc='k',
                                mec='k',
                                ms=10,
                                alpha=0.3,
                                label=str(i) + '.' + region_labels[i])
        points.append(point)
    if special_idx != None:
        for i in special_idx:
            point, = mp.pyplot.plot(hypothesis.x1EQ[0, i],
                                    hypothesis.zEQ[0, i],
                                    '*',
                                    mfc='r',
                                    mec='r',
                                    ms=10,
                                    alpha=0.8,
                                    label=str(i) + '.' + region_labels[i])
            points.append(point)
    #ax.plot(x1lin0, zlin0, '*', mfc='r', mec='r', ms=10)
    #ax.axes.text(x1lin0 - 0.1, zlin0 + 0.2, 'E=0.0', fontsize=10, color='r')
    #ax.plot(x1sq0, zsq0, '*', mfc='m', mec='m', ms=10)
    #ax.axes.text(x1sq0, zsq0 - 0.2, 'E=1.0', fontsize=10, color='m')
    ax.set_title(
        'Equilibria, nullclines and Taylor series approximations \n at the x1-z phase plane of the 2D Epileptor for x1<0'
    )
    ax.axes.autoscale(tight=True)
    ax.axes.set_xlabel('x1')
    ax.axes.set_ylabel('z')
    ax.axes.set_ylim(2.0, 5.0)
    if MOUSEHOOVER:
        #datacursor( lines[0], formatter='{label}'.format, bbox=dict(fc='white'),
        #           arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) )    #hover=True
        HighlightingDataCursor(points[0],
                               formatter='{label}'.format,
                               bbox=dict(fc='white'),
                               arrowprops=dict(arrowstyle='simple',
                                               fc='white',
                                               alpha=0.5))

    if save_flag:
        if len(fig.get_label()) == 0:
            fig.set_label(figure_name)
        else:
            figure_name = fig.get_label().replace(" ", "_").replace("\t", "_")
        _save_figure(figure_dir=figure_dir,
                     figure_format=figure_format,
                     figure_name=figure_name)
    _check_show(show_flag)
    def plot_nullclines_eq(self,
                           model_config,
                           region_labels,
                           special_idx,
                           model,
                           zmode,
                           figure_name,
                           show_flag=SHOW_FLAG,
                           save_flag=SAVE_FLAG,
                           figure_dir=FOLDER_FIGURES,
                           figure_format=FIG_FORMAT):
        add_name = " " + "Epileptor " + model + " z-" + str(zmode)
        figure_name = figure_name + add_name

        # Fixed parameters for all regions:
        x1eq = model_config.x1EQ
        zeq = model_config.zEQ
        a = numpy.mean(model_config.a)
        b = numpy.mean(model_config.b)
        d = numpy.mean(model_config.d)
        yc = numpy.mean(model_config.yc)
        Iext1 = numpy.mean(model_config.Iext1)
        slope = numpy.mean(model_config.slope)
        # The point of the linear approximation (1st order Taylor expansion)
        x1LIN = def_x1lin(X1_DEF, X1_EQ_CR_DEF, len(region_labels))
        x1SQ = X1_EQ_CR_DEF
        x1lin0 = numpy.mean(x1LIN)
        # The point of the square (parabolic) approximation (2nd order Taylor expansion)
        x1sq0 = numpy.mean(x1SQ)

        # Lines:

        # x1 nullcline:
        x1 = numpy.linspace(-2.0, 2.0, 100)
        y1 = calc_eq_y1(x1, yc, d=d)

        # z nullcine
        zX1 = calc_fx1(
            x1,
            z=0,
            y1=y1,
            Iext1=Iext1,
            slope=slope,
            a=a,
            b=b,
            d=d,
            tau1=1.0,
            x1_neg=None,
            model=model,
            x2=0.0,
        )  # yc + Iext1 - x1 ** 3 - 2.0 * x1 ** 2

        # approximations:
        # linear:
        x1lin = numpy.linspace(-5.5 / 3.0, -3.5 / 3, 30)
        # x1 nullcline after linear approximation
        zX1lin = calc_fx1_2d_taylor(
            x1lin,
            x1lin0,
            z=0,
            y1=yc,
            Iext1=Iext1,
            slope=slope,
            a=a,
            b=b,
            d=d,
            tau1=1.0,
            x1_neg=None,
            order=2)  # yc + Iext1 + 2.0 * x1lin0 ** 3 + 2.0 * x1lin0 ** 2 - \
        # (3.0 * x1lin0 ** 2 + 4.0 * x1lin0) * x1lin  # x1 nullcline after linear approximation
        # center point without approximation:
        # zlin0 = yc + Iext1 - x1lin0 ** 3 - 2.0 * x1lin0 ** 2
        # square:
        x1sq = numpy.linspace(-5.0 / 3, -1.0, 30)
        # x1 nullcline after parabolic approximation
        zX1sq = calc_fx1_2d_taylor(
            x1sq,
            x1sq0,
            z=0,
            y1=yc,
            Iext1=Iext1,
            slope=slope,
            a=a,
            b=b,
            d=d,
            tau1=1.0,
            x1_neg=None,
            order=3,
            shape=x1sq.shape
        )  # + 2.0 * x1sq ** 2 + 16.0 * x1sq / 3.0 + yc + Iext1 + 64.0 / 27.0
        # center point (critical equilibrium point) without approximation:
        # zsq0 = yc + Iext1 - x1sq0 ** 3 - 2.0 * x1sq0 ** 2
        x0e = calc_x0_val__to_model_x0(X0_CR_DEF,
                                       yc,
                                       Iext1,
                                       a=a,
                                       b=b,
                                       d=d,
                                       zmode=zmode)
        x0ne = calc_x0_val__to_model_x0(X0_DEF,
                                        yc,
                                        Iext1,
                                        a=a,
                                        b=b,
                                        d=d,
                                        zmode=zmode)
        # z nullcline:
        zZe = calc_fz(x1, z=0.0, x0=x0e, tau1=1.0, tau0=1.0,
                      zmode=zmode)  # for epileptogenic regions
        zZne = calc_fz(x1, z=0.0, x0=x0ne, tau1=1.0, tau0=1.0,
                       zmode=zmode)  # for non-epileptogenic regions

        fig = pyplot.figure(figure_name, figsize=FIG_SIZE)
        x1null, = pyplot.plot(x1, zX1, 'b-', label='x1 nullcline', linewidth=1)
        ax = pyplot.gca()
        ax.axes.hold(True)
        zE1null, = pyplot.plot(
            x1,
            zZe,
            'g-',
            label='z nullcline at critical point (e_values=1)',
            linewidth=1)
        zE2null, = pyplot.plot(x1,
                               zZne,
                               'g--',
                               label='z nullcline for e_values=0',
                               linewidth=1)
        sq, = pyplot.plot(x1sq,
                          zX1sq,
                          'm--',
                          label='Parabolic local approximation',
                          linewidth=2)
        lin, = pyplot.plot(x1lin,
                           zX1lin,
                           'c--',
                           label='Linear local approximation',
                           linewidth=2)
        pyplot.legend(handles=[x1null, zE1null, zE2null, lin, sq])

        ii = range(len(region_labels))
        if special_idx is None:
            ii = numpy.delete(ii, special_idx)

        points = []
        for i in ii:
            point, = pyplot.plot(x1eq[i],
                                 zeq[i],
                                 '*',
                                 mfc='k',
                                 mec='k',
                                 ms=10,
                                 alpha=0.3,
                                 label=str(i) + '.' + region_labels[i])
            points.append(point)
        if special_idx is None:
            for i in special_idx:
                point, = pyplot.plot(x1eq[i],
                                     zeq[i],
                                     '*',
                                     mfc='r',
                                     mec='r',
                                     ms=10,
                                     alpha=0.8,
                                     label=str(i) + '.' + region_labels[i])
                points.append(point)
        # ax.plot(x1lin0, zlin0, '*', mfc='r', mec='r', ms=10)
        # ax.axes.text(x1lin0 - 0.1, zlin0 + 0.2, 'e_values=0.0', fontsize=10, color='r')
        # ax.plot(x1sq0, zsq0, '*', mfc='m', mec='m', ms=10)
        # ax.axes.text(x1sq0, zsq0 - 0.2, 'e_values=1.0', fontsize=10, color='m')
        if model == "2d":
            ax.set_title(
                "Equilibria, nullclines and Taylor series approximations \n at the x1-z phase plane of the"
                + add_name + " for x1<0")
        else:
            ax.set_title(
                "Equilibria, nullclines at the x1-z phase plane of the" +
                add_name + " for x1<0")
        ax.axes.autoscale(tight=True)
        ax.axes.set_xlabel('x1')
        ax.axes.set_ylabel('z')
        if MOUSEHOOVER:
            # datacursor( lines[0], formatter='{label}'.format, bbox=dict(fc='white'),
            #           arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) )    #hover=True
            HighlightingDataCursor(points[0],
                                   formatter='{label}'.format,
                                   bbox=dict(fc='white'),
                                   arrowprops=dict(arrowstyle='simple',
                                                   fc='white',
                                                   alpha=0.5))

        if len(fig.get_label()) == 0:
            fig.set_label(figure_name)
        else:
            figure_name = fig.get_label().replace(": ", "_").replace(
                " ", "_").replace("\t", "_")

        save_figure(save_flag,
                    figure_dir=figure_dir,
                    figure_format=figure_format,
                    figure_name=figure_name)
        check_show(show_flag)
Exemple #7
0
def plotter(df,
            title=False,
            kind='line',
            x_label=None,
            y_label=None,
            style='ggplot',
            figsize=(8, 4),
            save=False,
            legend_pos='best',
            reverse_legend='guess',
            num_to_plot=7,
            tex='try',
            colours='default',
            cumulative=False,
            pie_legend=True,
            partial_pie=False,
            show_totals=False,
            transparent=False,
            output_format='png',
            interactive=False,
            black_and_white=False,
            show_p_val=False,
            indices=False,
            transpose=False,
            rot=False,
            **kwargs):
    """Visualise corpus interrogations.
    :param title: A title for the plot
    :type title: str
    :param df: Data to be plotted
    :type df: Pandas DataFrame
    :param x_label: A label for the x axis
    :type x_label: str
    :param y_label: A label for the y axis
    :type y_label: str
    :param kind: The kind of chart to make
    :type kind: str ('line'/'bar'/'barh'/'pie'/'area')
    :param style: Visual theme of plot
    :type style: str ('ggplot'/'bmh'/'fivethirtyeight'/'seaborn-talk'/etc)
    :param figsize: Size of plot
    :type figsize: tuple (int, int)
    :param save: If bool, save with *title* as name; if str, use str as name
    :type save: bool/str
    :param legend_pos: Where to place legend
    :type legend_pos: str ('upper right'/'outside right'/etc)
    :param reverse_legend: Reverse the order of the legend
    :type reverse_legend: bool
    :param num_to_plot: How many columns to plot
    :type num_to_plot: int/'all'
    :param tex: Use TeX to draw plot text
    :type tex: bool
    :param colours: Colourmap for lines/bars/slices
    :type colours: str
    :param cumulative: Plot values cumulatively
    :type cumulative: bool
    :param pie_legend: Show a legend for pie chart
    :type pie_legend: bool
    :param partial_pie: Allow plotting of pie slices only
    :type partial_pie: bool
    :param show_totals: Print sums in plot where possible
    :type show_totals: str -- 'legend'/'plot'/'both'
    :param transparent: Transparent .png background
    :type transparent: bool
    :param output_format: File format for saved image
    :type output_format: str -- 'png'/'pdf'
    :param black_and_white: Create black and white line styles
    :type black_and_white: bool
    :param show_p_val: Attempt to print p values in legend if contained in df
    :type show_p_val: bool
    :param indices: To use when plotting "distance from root"
    :type indices: bool
    :param stacked: When making bar chart, stack bars on top of one another
    :type stacked: str
    :param filled: For area and bar charts, make every column sum to 100
    :type filled: str
    :param legend: Show a legend
    :type legend: bool
    :param rot: Rotate x axis ticks by *rot* degrees
    :type rot: int
    :param subplots: Plot each column separately
    :type subplots: bool
    :param layout: Grid shape to use when *subplots* is True
    :type layout: tuple -- (int, int)
    :param interactive: Experimental interactive options
    :type interactive: list -- [1, 2, 3]
    :returns: matplotlib figure
    """
    import corpkit
    import os
    try:
        from IPython.utils.shimmodule import ShimWarning
        import warnings
        warnings.simplefilter('ignore', ShimWarning)
    except:
        pass

    kwargs['rot'] = rot

    xtickspan = kwargs.pop('xtickspan', False)

    import matplotlib as mpl
    from matplotlib import rc

    # prefer seaborn plotting
    try:
        import seaborn as sns
    except ImportError:
        pass
    except AttributeError:
        pass

    if interactive:
        import matplotlib.pyplot as plt, mpld3
    else:
        import matplotlib.pyplot as plt

    import matplotlib.ticker as ticker

    import pandas
    from pandas import DataFrame, Series

    from time import localtime, strftime
    from process import checkstack

    if interactive:
        import mpld3
        import collections
        from mpld3 import plugins, utils
        from plugins import InteractiveLegendPlugin, HighlightLines

    have_mpldc = False
    try:
        from mpldatacursor import datacursor, HighlightingDataCursor
        have_mpldc = True
    except ImportError:
        pass

    # check what environment we're in
    tk = checkstack('tkinter')
    running_python_tex = checkstack('pythontex')
    running_spider = checkstack('spyder')

    if not title:
        title = ''

    def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100):
        """remove extreme values from colourmap --- no pure white"""
        import matplotlib.colors as colors
        import numpy as np
        new_cmap = colors.LinearSegmentedColormap.from_list(
            'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name,
                                                a=minval,
                                                b=maxval),
            cmap(np.linspace(minval, maxval, n)))
        return new_cmap

    def get_savename(imagefolder, save=False, title=False, ext='png'):
        """Come up with the savename for the image."""
        import os
        from corpkit.process import urlify

        # name as
        if not ext.startswith('.'):
            ext = '.' + ext
        if isinstance(save, STRINGTYPE):
            savename = os.path.join(imagefolder, (urlify(save) + ext))
        #this 'else' is redundant now that title is obligatory
        else:
            if title:
                filename = urlify(title) + ext
                savename = os.path.join(imagefolder, filename)

        # remove duplicated ext
        if savename.endswith('%s%s' % (ext, ext)):
            savename = savename.replace('%s%s' % (ext, ext), ext, 1)
        return savename

    def rename_data_with_total(dataframe,
                               was_series=False,
                               using_tex=False,
                               absolutes=True):
        """adds totals (abs, rel, keyness) to entry name strings"""
        if was_series:
            where_the_words_are = dataframe.index
        else:
            where_the_words_are = dataframe.columns
        the_labs = []
        for w in list(where_the_words_are):
            if not absolutes:
                if was_series:
                    perc = dataframe.T[w][0]
                else:
                    the_labs.append(w)
                    continue
                if using_tex:
                    the_labs.append('%s (%.2f\%%)' % (w, perc))
                else:
                    the_labs.append('%s (%.2f %%)' % (w, perc))
            else:
                if was_series:
                    score = dataframe.T[w].sum()
                else:
                    score = dataframe[w].sum()
                if using_tex:
                    the_labs.append('%s (n=%d)' % (w, score))
                else:
                    the_labs.append('%s (n=%d)' % (w, score))
        if not was_series:
            dataframe.columns = the_labs
        else:
            vals = list(dataframe[list(dataframe.columns)[0]].values)
            dataframe = pandas.DataFrame(vals, index=the_labs)
            dataframe.columns = ['Total']
        return dataframe

    def auto_explode(dataframe, tinput, was_series=False, num_to_plot=7):
        """give me a list of strings and i'll output explode option"""
        output = [0 for s in range(num_to_plot)]

        if was_series:
            l = list(dataframe.index)
        else:
            l = list(dataframe.columns)

        if isinstance(tinput, (STRINGTYPE, int)):
            tinput = [tinput]
        if isinstance(tinput, list):
            for i in tinput:
                if isinstance(i, STRINGTYPE):
                    index = l.index(i)
                else:
                    index = i
                output[index] = 0.1
        return output

    # get a few options from kwargs
    sbplt = kwargs.get('subplots', False)
    show_grid = kwargs.pop('grid', True)
    the_rotation = kwargs.get('rot', False)
    dragmode = kwargs.pop('draggable', False)
    leg_frame = kwargs.pop('legend_frame', True)
    leg_alpha = kwargs.pop('legend_alpha', 0.8)
    # auto set num to plot based on layout
    lo = kwargs.get('layout', None)
    if lo:
        num_to_plot = lo[0] * lo[1]

    # todo: get this dynamically instead.
    styles = [
        'dark_background', 'bmh', 'grayscale', 'ggplot', 'fivethirtyeight',
        'matplotlib', False, 'mpl-white'
    ]
    #if style not in styles:
    #raise ValueError('Style %s not found. Use %s' % (str(style), ', '.join(styles)))

    if style == 'mpl-white':
        try:
            sns.set_style("whitegrid")
        except:
            pass
        style = 'matplotlib'

    if kwargs.get('savepath'):
        mpl.rcParams['savefig.directory'] = kwargs.get('savepath')
        kwargs.pop('savepath', None)

    mpl.rcParams['savefig.bbox'] = 'tight'
    mpl.rcParams.update({'figure.autolayout': True})

    # try to use tex
    # TO DO:
    # make some font kwargs here
    using_tex = False
    mpl.rcParams['font.family'] = 'sans-serif'
    mpl.rcParams['text.latex.unicode'] = True

    if tex == 'try' or tex is True:
        try:
            rc('text', usetex=True)
            rc('font', **{'family': 'serif', 'serif': ['Computer Modern']})
            using_tex = True
        except:
            matplotlib.rc('font', family='sans-serif')
            matplotlib.rc('font', serif='Helvetica Neue')
            matplotlib.rc('text', usetex='false')
            rc('text', usetex=False)
    else:
        rc('text', usetex=False)

    if interactive:
        using_tex = False

    if show_totals is False:
        show_totals = 'none'

    # find out what kind of plot we're making, and enable
    # or disable interactive values if need be
    kwargs['kind'] = kind.lower()

    if interactive:
        if kwargs['kind'].startswith('bar'):
            interactive_types = [3]
        elif kwargs['kind'] == 'area':
            interactive_types = [2, 3]
        elif kwargs['kind'] == 'line':
            interactive_types = [2, 3]
        elif kwargs['kind'] == 'pie':
            interactive_types = None
            warnings.warn(
                'Interactive plotting not yet available for pie plots.')
        else:
            interactive_types = [None]
    if interactive is False:
        interactive_types = [None]

    # find out if pie mode, add autopct format
    piemode = False
    if kind == 'pie':
        piemode = True
        # always the best spot for pie
        #if legend_pos == 'best':
        #legend_pos = 'lower left'
        if show_totals.endswith('plot') or show_totals.endswith('both'):
            kwargs['pctdistance'] = 0.6
            if using_tex:
                kwargs['autopct'] = r'%1.1f\%%'
            else:
                kwargs['autopct'] = '%1.1f%%'

    # copy data, make series into df
    dataframe = df.copy()
    if kind == 'heatmap':
        try:
            dataframe = dataframe.T
        except:
            pass
    was_series = False
    if isinstance(dataframe, Series):
        was_series = True
        if not cumulative:
            dataframe = DataFrame(dataframe)
        else:
            dataframe = DataFrame(dataframe.cumsum())
    else:
        # don't know if this is much good.
        if transpose:
            dataframe = dataframe.T
        if cumulative:
            dataframe = DataFrame(dataframe.cumsum())
        if len(list(dataframe.columns)) == 1:
            was_series = True

    # attempt to convert x axis to ints:
    #try:
    #    dataframe.index = [int(i) for i in list(dataframe.index)]
    #except:
    #    pass

    # remove totals and tkinter order
    if not was_series:
        for name, ax in zip(['Total'] * 2 + ['tkintertable-order'] * 2,
                            [0, 1, 0, 1]):
            try:
                dataframe = dataframe.drop(name, axis=ax, errors='ignore')
            except:
                pass

    try:
        dataframe = dataframe.drop('tkintertable-order', errors='ignore')
    except:
        pass
    try:
        dataframe = dataframe.drop('tkintertable-order',
                                   axis=1,
                                   errors='ignore')
    except:
        pass

    # look at columns to see if all can be ints, in which case, set up figure
    # for depnumming
    if not was_series:
        if indices == 'guess':

            def isint(x):
                try:
                    a = float(x)
                    b = int(a)
                except (ValueError, OverflowError):
                    return False
                else:
                    return a == b

            if all([isint(x) is True for x in list(dataframe.columns)]):
                indices = True
            else:
                indices = False

        # if depnumming, plot all, transpose, and rename axes
        if indices is True:
            num_to_plot = 'all'
            dataframe = dataframe.T
            if y_label is None:
                y_label = 'Percentage of all matches'
            if x_label is None:
                x_label = ''

    # set backend?
    output_formats = [
        'svgz', 'ps', 'emf', 'rgba', 'raw', 'pdf', 'svg', 'eps', 'png', 'pgf'
    ]
    if output_format not in output_formats:
        raise ValueError('%s output format not recognised. Must be: %s' %
                         (output_format, ', '.join(output_formats)))

    # don't know if these are necessary
    if 'pdf' in output_format:
        plt.switch_backend(output_format)
    if 'pgf' in output_format:
        plt.switch_backend(output_format)

    if num_to_plot == 'all':
        if was_series:
            if not piemode:
                num_to_plot = len(dataframe)
            else:
                num_to_plot = len(dataframe)
        else:
            if not piemode:
                num_to_plot = len(list(dataframe.columns))
            else:
                num_to_plot = len(dataframe.index)

    # explode pie, or remove if not piemode
    if piemode and not sbplt and kwargs.get('explode'):
        kwargs['explode'] = auto_explode(dataframe,
                                         kwargs['explode'],
                                         was_series=was_series,
                                         num_to_plot=num_to_plot)
    else:
        kwargs.pop('explode', None)

    legend = kwargs.get('legend', True)

    #cut data short
    plotting_a_totals_column = False
    if was_series:
        if list(dataframe.columns)[0] != 'Total':
            try:
                can_be_ints = [int(x) for x in list(dataframe.index)]
                num_to_plot = len(dataframe)
            except:
                dataframe = dataframe[:num_to_plot]
        elif list(dataframe.columns)[0] == 'Total':
            plotting_a_totals_column = True
            if not 'legend' in kwargs:
                legend = False
            num_to_plot = len(dataframe)
    else:
        if transpose:
            dataframe = dataframe.head(num_to_plot)
        else:
            dataframe = dataframe.T.head(num_to_plot).T

    # remove stats fields, put p in entry text, etc.
    statfields = ['slope', 'intercept', 'r', 'p', 'stderr']
    try:
        dataframe = dataframe.drop(statfields, axis=1, errors='ignore')
    except:
        pass
    try:
        dataframe.ix['p']
        there_are_p_vals = True
    except:
        there_are_p_vals = False
    if show_p_val:
        if there_are_p_vals:
            newnames = []
            for col in list(dataframe.columns):
                pval = dataframe[col]['p']

                def p_string_formatter(val):
                    if val < 0.001:
                        if not using_tex:
                            return 'p < 0.001'
                        else:
                            return r'p $<$ 0.001'
                    else:
                        return 'p = %s' % format(val, '.3f')

                pstr = p_string_formatter(pval)
                newname = '%s (%s)' % (col, pstr)
                newnames.append(newname)
            dataframe.columns = newnames
            dataframe.drop(statfields, axis=0, inplace=True, errors='ignore')
        else:
            warnings.warn(
                'No p-values calculated to show.\n\nUse keep_stats kwarg while editing to generate these values.'
            )
    else:
        if there_are_p_vals:
            dataframe.drop(statfields, axis=0, inplace=True, errors='ignore')

    # make and set y label
    absolutes = True
    if isinstance(dataframe, DataFrame):
        try:
            if not all([s.is_integer() for s in dataframe.iloc[0, :].values]):
                absolutes = False
        except:
            pass
    else:
        if not all([s.is_integer() for s in dataframe.values]):
            absolutes = False

    ##########################################
    ################ COLOURS #################
    ##########################################

    # set defaults, with nothing for heatmap yet
    if colours is True or colours == 'default' or colours == 'Default':
        if kind != 'heatmap':
            colours = 'viridis'
        else:
            colours = 'default'

    # assume it's a single color, unless string denoting map
    cmap_or_c = 'color'
    if isinstance(colours, str):
        cmap_or_c = 'colormap'
    from matplotlib.colors import LinearSegmentedColormap
    if isinstance(colours, LinearSegmentedColormap):
        cmap_or_c = 'colormap'

    # for heatmaps, it's always a colormap
    if kind == 'heatmap':
        cmap_or_c = 'cmap'
        # if it's a defaulty string, set accordingly
        if isinstance(colours, str):
            if colours.lower().startswith('diverg'):
                colours = sns.diverging_palette(10, 133, as_cmap=True)

            # if default not set, do diverge for any df with a number < 0
            elif colours.lower() == 'default':
                mn = dataframe.min()
                if isinstance(mn, Series):
                    mn = mn.min()
                if mn < 0:
                    colours = sns.diverging_palette(10, 133, as_cmap=True)
                else:
                    colours = sns.light_palette("green", as_cmap=True)

    if 'seaborn' not in style:
        kwargs[cmap_or_c] = colours
    #if not was_series:
    #    if kind in ['pie', 'line', 'area']:
    #        if colours and not plotting_a_totals_column:
    #            kwargs[cmap_or_c] = colours
    #    else:
    #        if colours:
    #            kwargs[cmap_or_c] = colours
    #if piemode:
    #    if num_to_plot > 0:
    #        kwargs[cmap_or_c] = colours
    #    else:
    #        if num_to_plot > 0:
    #            kwargs[cmap_or_c] = colours

    # multicoloured bar charts
    #if colours and cmap_or_c == 'colormap':
    #    if kind.startswith('bar'):
    #        if len(list(dataframe.columns)) == 1:
    #            if not black_and_white:
    #                import numpy as np
    #                the_range = np.linspace(0, 1, num_to_plot)
    #                middle = len(the_range) / 2
    #                try:
    #                    cmap = plt.get_cmap(colours)
    #                    kwargs[cmap_or_c] = [cmap(n) for n in the_range][middle]
    #                except ValueError:
    #                    kwargs[cmap_or_c] = colours
    #            # make a bar width ... ? ...
    #            #kwargs['width'] = (figsize[0] / float(num_to_plot)) / 1.5

    # reversing legend option
    if reverse_legend is True:
        rev_leg = True
    elif reverse_legend is False:
        rev_leg = False

    # show legend or don't, guess whether to reverse based on kind
    if kind in ['bar', 'barh', 'area', 'line', 'pie']:
        if was_series:
            legend = False
        if kind == 'pie':
            if pie_legend:
                legend = True
            else:
                legend = False
    if kind in ['barh', 'area']:
        if reverse_legend == 'guess':
            rev_leg = True
    if not 'rev_leg' in locals():
        rev_leg = False

    # the default legend placement
    if legend_pos is True:
        legend_pos = 'best'

    # cut dataframe if just_totals
    try:
        tst = dataframe['Combined total']
        dataframe = dataframe.head(num_to_plot)
    except:
        pass

    # no title for subplots because ugly,
    if title and not sbplt:
        kwargs['title'] = title

    # no interactive subplots yet:
    if sbplt and interactive:
        import warnings
        interactive = False
        warnings.warn('No interactive subplots yet, sorry.')
        return

    # not using pandas for labels or legend anymore.
    #kwargs['labels'] = None
    #kwargs['legend'] = False

    if legend:
        if num_to_plot > 6:
            if not kwargs.get('ncol'):
                kwargs['ncol'] = num_to_plot // 7
        # kwarg options go in leg_options
        leg_options = {
            'framealpha': leg_alpha,
            'shadow': kwargs.get('shadow', False),
            'ncol': kwargs.pop('ncol', 1)
        }

        # determine legend position based on this dict
        if legend_pos:
            possible = {
                'best': 0,
                'upper right': 1,
                'upper left': 2,
                'lower left': 3,
                'lower right': 4,
                'right': 5,
                'center left': 6,
                'center right': 7,
                'lower center': 8,
                'upper center': 9,
                'center': 10,
                'o r': 2,
                'outside right': 2,
                'outside upper right': 2,
                'outside center right': 'center left',
                'outside lower right': 'lower left'
            }

            if isinstance(legend_pos, int):
                the_loc = legend_pos
            elif isinstance(legend_pos, str):
                try:
                    the_loc = possible[legend_pos]
                except KeyError:
                    raise KeyError(
                        'legend_pos value must be one of:\n%s\n or an int between 0-10.'
                        % ', '.join(list(possible.keys())))
            leg_options['loc'] = the_loc
            #weirdness needed for outside plot
            if legend_pos in ['o r', 'outside right', 'outside upper right']:
                leg_options['bbox_to_anchor'] = (1.02, 1)
            if legend_pos == 'outside center right':
                leg_options['bbox_to_anchor'] = (1.02, 0.5)
            if legend_pos == 'outside lower right':
                leg_options['loc'] == 'upper right'
                leg_options['bbox_to_anchor'] = (0.5, 0.5)

        # a bit of distance between legend and plot for outside legends
        if isinstance(legend_pos, str):
            if legend_pos.startswith('o'):
                leg_options['borderaxespad'] = 1

    if not piemode:
        if show_totals.endswith('both') or show_totals.endswith('legend'):
            dataframe = rename_data_with_total(dataframe,
                                               was_series=was_series,
                                               using_tex=using_tex,
                                               absolutes=absolutes)
    else:
        if pie_legend:
            if show_totals.endswith('both') or show_totals.endswith('legend'):
                dataframe = rename_data_with_total(dataframe,
                                                   was_series=was_series,
                                                   using_tex=using_tex,
                                                   absolutes=absolutes)

    if piemode:
        if partial_pie:
            dataframe = dataframe / 100.0

    # some pie things
    if piemode:
        if not sbplt:
            kwargs['y'] = list(dataframe.columns)[0]

    def filler(df):
        pby = df.T.copy()
        for i in list(pby.columns):
            tot = pby[i].sum()
            pby[i] = pby[i] * 100.0 / tot
        return pby.T

    areamode = False
    if kind == 'area':
        areamode = True

    if legend is False:
        kwargs['legend'] = False

    # line highlighting option for interactive!
    if interactive:
        if 2 in interactive_types:
            if kind == 'line':
                kwargs['marker'] = ','
        if not piemode:
            kwargs['alpha'] = 0.1

    # convert dates --- works only in my current case!
    #if plotting_a_totals_column or not was_series:
    #    try:
    #        can_it_be_int = int(list(dataframe.index)[0])
    #        can_be_int = True
    #    except:
    #        can_be_int = False
    #    if can_be_int:
    #        if 1500 < int(list(dataframe.index)[0]):
    #            if 2050 > int(list(dataframe.index)[0]):
    #                n = pandas.PeriodIndex([d for d in list(dataframe.index)], freq='A')
    #                dataframe = dataframe.set_index(n)

    if kwargs.get('filled'):
        if areamode or kind.startswith('bar'):
            dataframe = filler(dataframe)
        kwargs.pop('filled', None)

    MARKERSIZE = 4
    COLORMAP = {
        0: {
            'marker': None,
            'dash': (None, None)
        },
        1: {
            'marker': None,
            'dash': [5, 5]
        },
        2: {
            'marker': "o",
            'dash': (None, None)
        },
        3: {
            'marker': None,
            'dash': [1, 3]
        },
        4: {
            'marker': "s",
            'dash': [5, 2, 5, 2, 5, 10]
        },
        5: {
            'marker': None,
            'dash': [5, 3, 1, 2, 1, 10]
        },
        6: {
            'marker': 'o',
            'dash': (None, None)
        },
        7: {
            'marker': None,
            'dash': [5, 3, 1, 3]
        },
        8: {
            'marker': "1",
            'dash': [1, 3]
        },
        9: {
            'marker': "*",
            'dash': [5, 5]
        },
        10: {
            'marker': "2",
            'dash': [5, 2, 5, 2, 5, 10]
        },
        11: {
            'marker': "s",
            'dash': (None, None)
        }
    }

    HATCHES = {
        0: {
            'color': '#dfdfdf',
            'hatch': "/"
        },
        1: {
            'color': '#6f6f6f',
            'hatch': "\\"
        },
        2: {
            'color': 'b',
            'hatch': "|"
        },
        3: {
            'color': '#dfdfdf',
            'hatch': "-"
        },
        4: {
            'color': '#6f6f6f',
            'hatch': "+"
        },
        5: {
            'color': 'b',
            'hatch': "x"
        }
    }

    if black_and_white:
        if kind == 'line':
            kwargs['linewidth'] = 1

        cmap = plt.get_cmap('Greys')
        new_cmap = truncate_colormap(cmap, 0.25, 0.95)
        if kind == 'bar':
            # darker if just one entry
            if len(dataframe.columns) == 1:
                new_cmap = truncate_colormap(cmap, 0.70, 0.90)
        kwargs[cmap_or_c] = new_cmap

    # remove things from kwargs if heatmap
    if kind == 'heatmap':
        hmargs = {
            'annot': kwargs.pop('annot', True),
            cmap_or_c: kwargs.pop(cmap_or_c, None),
            'fmt': kwargs.pop('fmt', ".2f"),
            'cbar': kwargs.pop('cbar', False)
        }

        for i in [
                'vmin', 'vmax', 'linewidths', 'linecolor', 'robust', 'center',
                'cbar_kws', 'cbar_ax', 'square', 'mask', 'norm'
        ]:
            if i in kwargs.keys():
                hmargs[i] = kwargs.pop(i, None)

    class dummy_context_mgr():
        """a fake context for plotting without style
        perhaps made obsolete by 'classic' style in new mpl"""
        def __enter__(self):
            return None

        def __exit__(self, one, two, three):
            return False

    with plt.style.context(
        (style)) if style != 'matplotlib' else dummy_context_mgr():

        kwargs.pop('filled', None)

        if not sbplt:
            # check if negative values, no stacked if so
            if areamode:
                if not kwargs.get('ax'):
                    kwargs['legend'] = False
                if dataframe.applymap(lambda x: x < 0.0).any().any():
                    kwargs['stacked'] = False
                    rev_leg = False
            if kind != 'heatmap':
                # turn off pie labels at the last minute
                if kind == 'pie' and pie_legend:
                    kwargs['labels'] = None
                    kwargs['autopct'] = '%.2f'
                if kind == 'pie':
                    kwargs.pop('color', None)
                ax = dataframe.plot(figsize=figsize, **kwargs)
            else:
                fg = plt.figure(figsize=figsize)
                if title:
                    plt.title(title)
                ax = kwargs.get('ax', plt.axes())
                tmp = sns.heatmap(dataframe, ax=ax, **hmargs)
                ax.set_title(title)
                for item in tmp.get_yticklabels():
                    item.set_rotation(0)
                plt.close(fg)

            if areamode and not kwargs.get('ax'):
                handles, labels = plt.gca().get_legend_handles_labels()
                del handles
                del labels

            if x_label:
                ax.set_xlabel(x_label)
            if y_label:
                ax.set_ylabel(y_label)

        else:
            if not kwargs.get('layout'):
                plt.gcf().set_tight_layout(False)

            if kind != 'heatmap':
                ax = dataframe.plot(figsize=figsize, **kwargs)
            else:
                plt.figure(figsize=figsize)
                if title:
                    plt.title(title)
                ax = plt.axes()
                sns.heatmap(dataframe, ax=ax, **hmargs)
                plt.xticks(rotation=0)
                plt.yticks(rotation=0)

        def rotate_degrees(rotation, labels):
            if rotation is None:
                if max(labels, key=len) > 6:
                    return 45
                else:
                    return 0
            elif rotation is False:
                return 0
            elif rotation is True:
                return 45
            else:
                return rotation

        if sbplt:
            if 'layout' not in kwargs:
                axes = [l for l in ax]
            else:
                axes = []
                cols = [l for l in ax]
                for col in cols:
                    for bit in col:
                        axes.append(bit)
            for index, a in enumerate(axes):
                if xtickspan is not False:
                    a.xaxis.set_major_locator(
                        ticker.MultipleLocator(xtickspan))
                labels = [item.get_text() for item in a.get_xticklabels()]
                rotation = rotate_degrees(the_rotation, labels)
                try:
                    if the_rotation == 0:
                        ax.set_xticklabels(labels,
                                           rotation=rotation,
                                           ha='center')
                    else:
                        ax.set_xticklabels(labels,
                                           rotation=rotation,
                                           ha='right')
                except AttributeError:
                    pass
        else:
            if kind == 'heatmap':
                labels = [item.get_text() for item in ax.get_xticklabels()]
                rotation = rotate_degrees(the_rotation, labels)
                if the_rotation == 0:
                    ax.set_xticklabels(labels, rotation=rotation, ha='center')
                else:
                    ax.set_xticklabels(labels, rotation=rotation, ha='right')

        if transparent:
            plt.gcf().patch.set_facecolor('white')
            plt.gcf().patch.set_alpha(0)

        if black_and_white:
            if kind == 'line':
                # white background
                # change everything to black and white with interesting dashes and markers
                c = 0
                for line in ax.get_lines():
                    line.set_color('black')
                    #line.set_width(1)
                    line.set_dashes(COLORMAP[c]['dash'])
                    line.set_marker(COLORMAP[c]['marker'])
                    line.set_markersize(MARKERSIZE)
                    c += 1
                    if c == len(list(COLORMAP.keys())):
                        c = 0

        # draw legend with proper placement etc
        if legend:
            if not piemode and not sbplt and kind != 'heatmap':
                if 3 not in interactive_types:
                    handles, labels = plt.gca().get_legend_handles_labels()
                    # area doubles the handles and labels. this removes half:
                    #if areamode:
                    #    handles = handles[-len(handles) / 2:]
                    #    labels = labels[-len(labels) / 2:]
                    if rev_leg:
                        handles = handles[::-1]
                        labels = labels[::-1]
                    if kwargs.get('ax'):
                        lgd = plt.gca().legend(handles, labels, **leg_options)
                        ax.get_legend().draw_frame(leg_frame)
                    else:
                        lgd = plt.legend(handles, labels, **leg_options)
                        lgd.draw_frame(leg_frame)

    if interactive:
        # 1 = highlight lines
        # 2 = line labels
        # 3 = legend switches
        ax = plt.gca()
        # fails for piemode
        lines = ax.lines
        handles, labels = plt.gca().get_legend_handles_labels()
        if 1 in interactive_types:
            plugins.connect(plt.gcf(), HighlightLines(lines))

        if 3 in interactive_types:
            plugins.connect(
                plt.gcf(),
                InteractiveLegendPlugin(lines, labels, alpha_unsel=0.0))

        for i, l in enumerate(lines):
            y_vals = l.get_ydata()
            x_vals = l.get_xdata()
            x_vals = [str(x) for x in x_vals]
            if absolutes:
                ls = [
                    '%s (%s: %d)' % (labels[i], x_val, y_val)
                    for x_val, y_val in zip(x_vals, y_vals)
                ]
            else:
                ls = [
                    '%s (%s: %.2f%%)' % (labels[i], x_val, y_val)
                    for x_val, y_val in zip(x_vals, y_vals)
                ]
            if 2 in interactive_types:
                #if 'kind' in kwargs and kwargs['kind'] == 'area':
                tooltip_line = mpld3.plugins.LineLabelTooltip(
                    lines[i], labels[i])
                mpld3.plugins.connect(plt.gcf(), tooltip_line)
                #else:
                if kind == 'line':
                    tooltip_point = mpld3.plugins.PointLabelTooltip(l,
                                                                    labels=ls)
                    mpld3.plugins.connect(plt.gcf(), tooltip_point)

    if piemode:
        if not sbplt:
            plt.axis('equal')
            ax.get_xaxis().set_visible(False)
            ax.get_yaxis().set_visible(False)

    # add x label
    # this could be revised now!
    # if time series period, it's year for now
    if isinstance(dataframe.index, pandas.tseries.period.PeriodIndex):
        x_label = 'Year'

    y_l = False
    if not absolutes:
        y_l = 'Percentage'
    else:
        y_l = 'Absolute frequency'

    # hacky: turn legend into subplot titles :)
    if sbplt:
        # title the big plot
        #plt.gca().suptitle(title, fontsize = 16)
        #plt.subplots_adjust(top=0.9)
        # get all axes
        if 'layout' not in kwargs:
            axes = [l for index, l in enumerate(ax)]
        else:
            axes = []
            cols = [l for index, l in enumerate(ax)]
            for col in cols:
                for bit in col:
                    axes.append(bit)

        # set subplot titles
        for index, a in enumerate(axes):
            try:
                titletext = list(dataframe.columns)[index]
            except:
                pass
            a.set_title(titletext)
            try:
                a.legend_.remove()
            except:
                pass
            #try:
            #    from matplotlib.ticker import MaxNLocator
            #    from corpkit.process import is_number
            #    indx = list(dataframe.index)
            #    if all([is_number(qq) for qq in indx]):
            #        ax.get_xaxis().set_major_locator(MaxNLocator(integer=True))
            #except:
            #    pass
            # remove axis labels for pie plots
            if piemode:
                a.axes.get_xaxis().set_visible(False)
                a.axes.get_yaxis().set_visible(False)
                a.axis('equal')

            a.grid(b=show_grid)

    # add sums to bar graphs and pie graphs
    # doubled right now, no matter

    if not sbplt:

        # show grid
        ax.grid(b=show_grid)

        if kind.startswith('bar'):
            width = ax.containers[0][0].get_width()

    if was_series:
        the_y_limit = plt.ylim()[1]
        if show_totals.endswith('plot') or show_totals.endswith('both'):
            # make plot a bit higher if putting these totals on it
            plt.ylim([0, the_y_limit * 1.05])
            for i, label in enumerate(list(dataframe.index)):
                if len(dataframe.ix[label]) == 1:
                    score = dataframe.ix[label][0]
                else:
                    if absolutes:
                        score = dataframe.ix[label].sum()
                    else:
                        #import warnings
                        #warnings.warn("It's not possible to determine total percentage from individual percentages.")
                        continue
                if not absolutes:
                    plt.annotate('%.2f' % score, (i, score),
                                 ha='center',
                                 va='bottom')
                else:
                    plt.annotate(score, (i, score), ha='center', va='bottom')
    else:
        the_y_limit = plt.ylim()[1]
        if show_totals.endswith('plot') or show_totals.endswith('both'):
            for i, label in enumerate(list(dataframe.columns)):
                if len(dataframe[label]) == 1:
                    score = dataframe[label][0]
                else:
                    if absolutes:
                        score = dataframe[label].sum()
                    else:
                        #import warnings
                        #warnings.warn("It's not possible to determine total percentage from individual percentages.")
                        continue
                if not absolutes:
                    plt.annotate('%.2f' % score, (i, score),
                                 ha='center',
                                 va='bottom')
                else:
                    plt.annotate(score, (i, score), ha='center', va='bottom')

    if not kwargs.get('layout') and not sbplt and not kwargs.get('ax'):
        plt.tight_layout()
    if kwargs.get('ax'):
        try:
            plt.gcf().set_tight_layout(False)
        except:
            pass
        try:
            plt.set_tight_layout(False)
        except:
            pass

    if save:
        if running_python_tex:
            imagefolder = '../images'
        else:
            imagefolder = 'images'

        savename = get_savename(imagefolder,
                                save=save,
                                title=title,
                                ext=output_format)

        if not os.path.isdir(imagefolder):
            os.makedirs(imagefolder)

        # save image and get on with our lives
        if legend_pos.startswith('o') and not sbplt:
            plt.gcf().savefig(savename,
                              dpi=150,
                              bbox_extra_artists=(lgd, ),
                              bbox_inches='tight',
                              format=output_format)
        else:
            plt.gcf().savefig(savename, dpi=150, format=output_format)
        time = strftime("%H:%M:%S", localtime())
        if os.path.isfile(savename):
            print('\n' + time + ": " + savename + " created.")
        else:
            raise ValueError("Error making %s." % savename)

    if dragmode:
        plt.legend().draggable()

    if sbplt:
        plt.subplots_adjust(right=.8)
        plt.subplots_adjust(left=.1)

    # add DataCursor to notebook backend if possible
    if have_mpldc:
        if kind == 'line':
            HighlightingDataCursor(
                plt.gca().get_lines(),
                highlight_width=4,
                highlight_color=False,
                formatter=lambda **kwargs: '%s: %s' %
                (kwargs['label'], "{0:.3f}".format(kwargs['y'])))
        else:
            datacursor(formatter=lambda **kwargs: '%s: %s' %
                       (kwargs['label'], "{0:.3f}".format(kwargs['height'])))

    #if not interactive and not running_python_tex and not running_spider \
    #    and not tk:
    #    plt.gcf().show()
    #    return plt
    #elif running_spider or tk:
    #    return plt

    if interactive:
        plt.subplots_adjust(right=.8)
        plt.subplots_adjust(left=.1)
        try:
            ax.legend_.remove()
        except:
            pass
        return mpld3.display()
    else:
        return plt
def plot_nullclines_eq(hypothesis,
                       region_labels,
                       special_idx=None,
                       model="2d",
                       zmode=numpy.array("lin"),
                       x0ne=X0_DEF,
                       x0e=X0_CR_DEF,
                       figure_name='Nullclines and equilibria',
                       show_flag=SHOW_FLAG,
                       save_flag=False,
                       figure_dir=FOLDER_FIGURES,
                       figure_format=FIG_FORMAT,
                       figsize=SMALL_SIZE):

    add_name = " " + "Epileptor " + model + " z-" + str(zmode)
    figure_name = hypothesis.name + " " + figure_name + add_name

    #Fixed parameters for all regions:
    x1eq = numpy.mean(hypothesis.x1EQ)
    yc = numpy.mean(hypothesis.yc)
    Iext1 = numpy.mean(hypothesis.Iext1)
    x0cr = numpy.mean(hypothesis.x0cr)  # Critical x0
    r = numpy.mean(hypothesis.rx0)
    # The point of the linear approximation (1st order Taylor expansion)
    x1lin0 = numpy.mean(hypothesis.x1LIN)
    # The point of the square (parabolic) approximation (2nd order Taylor expansion)
    x1sq0 = numpy.mean(hypothesis.x1SQ)
    if model != "2d" or zmode != numpy.array("lin"):
        x0cr, r = calc_x0cr_r(yc,
                              Iext1,
                              zmode=zmode,
                              x1_rest=X1_DEF,
                              x1_cr=X1_EQ_CR_DEF,
                              x0def=X0_DEF,
                              x0cr_def=X0_CR_DEF)

    # Lines:

    # x1 nullcline:
    x1 = numpy.linspace(-2.0, 2.0 / 3.0, 100)
    if model == "2d":
        y1 = yc
        b = -2.0
    else:
        y1 = calc_eq_y1(x1, yc, d=5.0)
        b = 3.0
    zX1 = calc_fx1(x1, z=0, y1=y1, Iext1=Iext1, x1_neg=None, model=model,
                   b=b)  # yc + Iext1 - x1 ** 3 - 2.0 * x1 ** 2
    # approximations:
    # linear:
    x1lin = numpy.linspace(-5.5 / 3.0, -3.5 / 3, 30)
    # x1 nullcline after linear approximation
    zX1lin = calc_fx1_2d_taylor(
        x1lin,
        x1lin0,
        z=0,
        y1=yc,
        Iext1=Iext1,
        slope=0.0,
        a=1.0,
        b=-2.0,
        tau1=1.0,
        x1_neg=None,
        order=2)  # yc + Iext1 + 2.0 * x1lin0 ** 3 + 2.0 * x1lin0 ** 2 - \
    # (3.0 * x1lin0 ** 2 + 4.0 * x1lin0) * x1lin  # x1 nullcline after linear approximation
    # center point without approximation:
    # zlin0 = yc + Iext1 - x1lin0 ** 3 - 2.0 * x1lin0 ** 2
    # square:
    x1sq = numpy.linspace(-5.0 / 3, -1.0, 30)
    # x1 nullcline after parabolic approximation
    zX1sq = calc_fx1_2d_taylor(
        x1sq,
        x1sq0,
        z=0,
        y1=yc,
        Iext1=Iext1,
        slope=0.0,
        a=1.0,
        b=-2.0,
        tau1=1.0,
        x1_neg=None,
        order=3,
        shape=x1sq.shape
    )  # + 2.0 * x1sq ** 2 + 16.0 * x1sq / 3.0 + yc + Iext1 + 64.0 / 27.0
    # center point (critical equilibrium point) without approximation:
    # zsq0 = yc + Iext1 - x1sq0 ** 3 - 2.0 * x1sq0 ** 2
    if model == "2d":
        # z nullcline:
        zZe = calc_fz(x1, z=0.0, x0=x0e, x0cr=x0cr, r=r,
                      zmode=zmode)  # for epileptogenic regions
        zZne = calc_fz(x1, z=0.0, x0=x0ne, x0cr=x0cr, r=r,
                       zmode=zmode)  # for non-epileptogenic regions
    else:
        x0e_6d = calc_rescaled_x0(x0e, yc, Iext1, zmode=zmode)
        x0ne_6d = calc_rescaled_x0(x0ne, yc, Iext1, zmode=zmode)
        # z nullcline:
        zZe = calc_fz(x1, z=0.0, x0=x0e_6d, zmode=zmode,
                      model="2d")  # for epileptogenic regions
        zZne = calc_fz(x1, z=0.0, x0=x0ne_6d, zmode=zmode,
                       model="2d")  # for non-epileptogenic regions

    fig = mp.pyplot.figure(figure_name, figsize=figsize)
    x1null, = mp.pyplot.plot(x1, zX1, 'b-', label='x1 nullcline', linewidth=1)
    ax = mp.pyplot.gca()
    ax.axes.hold(True)
    zE1null, = mp.pyplot.plot(x1,
                              zZe,
                              'g-',
                              label='z nullcline at critical point (E=1)',
                              linewidth=1)
    zE2null, = mp.pyplot.plot(x1,
                              zZne,
                              'g--',
                              label='z nullcline for E=0',
                              linewidth=1)
    sq, = mp.pyplot.plot(x1sq,
                         zX1sq,
                         'm--',
                         label='Parabolic local approximation',
                         linewidth=2)
    lin, = mp.pyplot.plot(x1lin,
                          zX1lin,
                          'c--',
                          label='Linear local approximation',
                          linewidth=2)
    mp.pyplot.legend(handles=[x1null, zE1null, zE2null, lin, sq])

    ii = range(hypothesis.n_regions)
    if special_idx is None:
        ii = numpy.delete(ii, special_idx)

    points = []
    for i in ii:
        point, = mp.pyplot.plot(hypothesis.x1EQ[i],
                                hypothesis.zEQ[i],
                                '*',
                                mfc='k',
                                mec='k',
                                ms=10,
                                alpha=0.3,
                                label=str(i) + '.' + region_labels[i])
        points.append(point)
    if special_idx is None:
        for i in special_idx:
            point, = mp.pyplot.plot(hypothesis.x1EQ[i],
                                    hypothesis.zEQ[i],
                                    '*',
                                    mfc='r',
                                    mec='r',
                                    ms=10,
                                    alpha=0.8,
                                    label=str(i) + '.' + region_labels[i])
            points.append(point)
    #ax.plot(x1lin0, zlin0, '*', mfc='r', mec='r', ms=10)
    #ax.axes.text(x1lin0 - 0.1, zlin0 + 0.2, 'E=0.0', fontsize=10, color='r')
    #ax.plot(x1sq0, zsq0, '*', mfc='m', mec='m', ms=10)
    #ax.axes.text(x1sq0, zsq0 - 0.2, 'E=1.0', fontsize=10, color='m')
    if model == "2d":
        ax.set_title(
            "Equilibria, nullclines and Taylor series approximations \n at the x1-z phase plane of the"
            + add_name + " for x1<0")
    else:
        ax.set_title("Equilibria, nullclines at the x1-z phase plane of the" +
                     add_name + " for x1<0")
    ax.axes.autoscale(tight=True)
    ax.axes.set_xlabel('x1')
    ax.axes.set_ylabel('z')
    ax.axes.set_ylim(2.0, 5.0)
    if MOUSEHOOVER:
        #datacursor( lines[0], formatter='{label}'.format, bbox=dict(fc='white'),
        #           arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5) )    #hover=True
        HighlightingDataCursor(points[0],
                               formatter='{label}'.format,
                               bbox=dict(fc='white'),
                               arrowprops=dict(arrowstyle='simple',
                                               fc='white',
                                               alpha=0.5))

    if save_flag:
        if len(fig.get_label()) == 0:
            fig.set_label(figure_name)
        else:
            figure_name = fig.get_label().replace(" ", "_").replace("\t", "_")
        _save_figure(figure_dir=figure_dir,
                     figure_format=figure_format,
                     figure_name=figure_name)
    _check_show(show_flag)