def XG_plusBA(n, RA, RB, rh, l, pm1, Om, lam, tau0, width, deltaphi, isP):
    bA = mp.sqrt(RA**2 - rh**2) / l
    bB = mp.sqrt(RB**2 - rh**2) / l
    f = lambda y: 2/Om/(bB-bA) * fp.exp(-fp.j*Om/2*(bB+bA)*y)\
                    * h_n2(y,n,RA,RB,rh,l,pm1,deltaphi,isP)\
                    * fp.sin( Om/2*(bB-bA)*(2*(tau0+width)-y))
    return fp.quad(f, [2 * tau0 + width, 2 * (tau0 + width)])
def lourenco_dist_mp(
        mgamma,
        z,
        n,
        m,
        sigma,
        Ne,
        Ne_scal,
        scal_fac=1):  # not sure if I do it right with the scale factor...
    s = mgamma / 2. / Ne_scal * scal_fac
    if s == 0:
        return numpy.nan
    #s = mgamma
    # prob = mp.power(2, (1-m)/2.)*mp.power(Ne, 0.5)*mp.power(mp.fabs(s), (m-1)/2.)*(1+1/(Ne*mp.power(sigma, 2.)))*mp.exp(-Ne*s) / (mp.power(mp.pi,0.5)*mp.power(sigma, m)*mp.gamma(m/2.)) * mp.besselk((m-1)/2., Ne*mp.fabs(s)*mp.power(1+1/(Ne*mp.power(sigma, 2.)),0.5))
    prob = mp.power(2, -(m + 1) / 2) * mp.exp(
        -n * s / 4 / mp.power(z, 2.)) * mp.sqrt(n) * mp.power(
            (1 + 4. * mp.power(z, 2.) / n / mp.power(sigma, 2.)) /
            mp.power(s, 2.), (1 - m) / 4) * mp.power(sigma, -m) / (
                mp.sqrt(mp.pi) * z * mp.gamma(m / 2.)) * mp.besselk(
                    (m - 1) / 2., 1 / (4. * mp.sqrt(
                        mp.power(z, 2.) /
                        (n * mp.power(s, 2.) *
                         (n / mp.power(z, 2.) + 4. / mp.power(sigma, 2.))))))

    return float(prob / 2 / Ne_scal * scal_fac)
Exemple #3
0
    def jac_ortho_basis_at_mp(self, p, q, r):
        a = 2 * (1 + p) / (1 - q) - 1 if q != 1 else -1
        b = q
        c = r

        f = jacobi(self.order - 1, 0, 0, a)
        df = jacobi_diff(self.order - 1, 0, 0, a)

        pab = []
        for i, (fi, dfi) in enumerate(zip(f, df)):
            g = jacobi(self.order - i - 1, 2 * i + 1, 0, b)
            dg = jacobi_diff(self.order - i - 1, 2 * i + 1, 0, b)

            for j, (gj, dgj) in enumerate(zip(g, dg)):
                cij = mp.sqrt((2 * i + 1) * (2 * i + 2 * j + 2)) / 2 ** (i + 1)

                tmp = (1 - b) ** (i - 1) if i > 0 else 1

                pij = 2 * tmp * dfi * gj
                qij = tmp * (-i * fi + (1 + a) * dfi) * gj + (1 - b) ** i * fi * dgj
                rij = (1 - b) ** i * fi * gj

                pab.append([cij * pij, cij * qij, cij * rij])

        sk = [mp.sqrt(k + 0.5) for k in range(self.order)]
        hc = [s * jp for s, jp in zip(sk, jacobi(self.order - 1, 0, 0, c))]
        dhc = [s * jp for s, jp in zip(sk, jacobi_diff(self.order - 1, 0, 0, c))]

        return [[pij * hk, qij * hk, rij * dhk] for pij, qij, rij in pab for hk, dhk in zip(hc, dhc)]
def XG_minusAB(n, RA, RB, rh, l, pm1, Om, lam, tau0, width, deltaphi, isP):
    bA = mp.sqrt(RA**2 - rh**2) / l
    bB = mp.sqrt(RB**2 - rh**2) / l
    f = lambda y: 2/Om/(bB-bA) * fp.exp(-fp.j*Om/2*(bB+bA)*y)\
                    * h_n1(y,n,RA,RB,rh,l,pm1,deltaphi,isP)\
                    * fp.sin( Om/2*(bB-bA)*(y-2*tau0))
    return fp.quad(f, [2 * tau0, 2 * tau0 + width])
Exemple #5
0
    def ortho_basis_at_mp(self, p, q, r):
        r = r if r != 1 else r + mp.eps

        a = 2*p/(1 - r)
        b = 2*q/(1 - r)
        c = r

        sk = [mp.mpf(2)**(-k - 0.25)*mp.sqrt(k + 0.5)
              for k in xrange(self.order)]
        pa = [s*jp for s, jp in zip(sk, jacobi(self.order - 1, 0, 0, a))]
        pb = [s*jp for s, jp in zip(sk, jacobi(self.order - 1, 0, 0, b))]

        ob = []
        for i, pi in enumerate(pa):
            for j, pj in enumerate(pb):
                cij = (1 - c)**(i + j)
                pij = pi*pj

                pc = jacobi(self.order - max(i, j) - 1, 2*(i + j + 1), 0, c)
                for k, pk in enumerate(pc):
                    ck = mp.sqrt(2*(k + j + i) + 3)

                    ob.append(cij*ck*pij*pk)

        return ob
def integrandof_Xn_plus(y, n, RA, RB, rh, l, pm1, Om, lam, tau0, width,
                        deltaphi, isP):
    bA = mp.sqrt(RA**2 - rh**2) / l
    bB = mp.sqrt(RB**2 - rh**2) / l
    return fp.j*4 * fp.exp(-fp.j*Om*(bB+bA)*(tau0+width/2))/(Om*(bB+bA))\
            * fp.cos( Om/2*(bB+bA)*(y-width) ) * fp.cos(Om/2*(bB-bA)*y)\
            * g_n2(y,n,RA,RB,rh,l,pm1,deltaphi,isP)
Exemple #7
0
    def jac_ortho_basis_at_mp(self, p, q, r):
        a = 2 * (1 + p) / (1 - q) - 1 if q != 1 else -1
        b = q
        c = r

        f = jacobi(self.order - 1, 0, 0, a)
        df = jacobi_diff(self.order - 1, 0, 0, a)

        pab = []
        for i, (fi, dfi) in enumerate(zip(f, df)):
            g = jacobi(self.order - i - 1, 2 * i + 1, 0, b)
            dg = jacobi_diff(self.order - i - 1, 2 * i + 1, 0, b)

            for j, (gj, dgj) in enumerate(zip(g, dg)):
                cij = mp.sqrt((2 * i + 1) * (2 * i + 2 * j + 2)) / 2**(i + 1)

                tmp = (1 - b)**(i - 1) if i > 0 else 1

                pij = 2 * tmp * dfi * gj
                qij = tmp * (-i * fi +
                             (1 + a) * dfi) * gj + (1 - b)**i * fi * dgj
                rij = (1 - b)**i * fi * gj

                pab.append([cij * pij, cij * qij, cij * rij])

        sk = [mp.sqrt(k + 0.5) for k in range(self.order)]
        hc = [s * jp for s, jp in zip(sk, jacobi(self.order - 1, 0, 0, c))]
        dhc = [
            s * jp for s, jp in zip(sk, jacobi_diff(self.order - 1, 0, 0, c))
        ]

        return [[pij * hk, qij * hk, rij * dhk] for pij, qij, rij in pab
                for hk, dhk in zip(hc, dhc)]
Exemple #8
0
    def ortho_basis_at_mp(self, p, q, r):
        a = 2 * p / (1 - r) if r != 1 else 0
        b = 2 * q / (1 - r) if r != 1 else 0
        c = r

        sk = [
            mp.mpf(2)**(-k - 0.25) * mp.sqrt(k + 0.5)
            for k in range(self.order)
        ]
        pa = [s * jp for s, jp in zip(sk, jacobi(self.order - 1, 0, 0, a))]
        pb = [s * jp for s, jp in zip(sk, jacobi(self.order - 1, 0, 0, b))]

        ob = []
        for i, pi in enumerate(pa):
            for j, pj in enumerate(pb):
                cij = (1 - c)**(i + j)
                pij = pi * pj

                pc = jacobi(self.order - max(i, j) - 1, 2 * (i + j + 1), 0, c)
                for k, pk in enumerate(pc):
                    ck = mp.sqrt(2 * (k + j + i) + 3)

                    ob.append(cij * ck * pij * pk)

        return ob
Exemple #9
0
def test_svd_test_case():
    # a test case from Golub and Reinsch
    #  (see wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).)

    eps = mp.exp(0.8 * mp.log(mp.eps))

    a = [[22, 10,  2,   3,  7],
         [14,  7, 10,   0,  8],
         [-1, 13, -1, -11,  3],
         [-3, -2, 13,  -2,  4],
         [ 9,  8,  1,  -2,  4],
         [ 9,  1, -7,   5, -1],
         [ 2, -6,  6,   5,  1],
         [ 4,  5,  0,  -2,  2]]

    a = mp.matrix(a)
    b = mp.matrix([mp.sqrt(1248), 20, mp.sqrt(384), 0, 0])

    S = mp.svd_r(a, compute_uv = False)
    S -= b
    assert mp.mnorm(S) < eps

    S = mp.svd_c(a, compute_uv = False)
    S -= b
    assert mp.mnorm(S) < eps
Exemple #10
0
def test_gauss_quadrature_dynamic(verbose = False):
    n = 5

    A = mp.randmatrix(2 * n, 1)

    def F(x):
        r = 0
        for i in xrange(len(A) - 1, -1, -1):
            r = r * x + A[i]
        return r

    def run(qtype, FW, R, alpha = 0, beta = 0):
        X, W = mp.gauss_quadrature(n, qtype, alpha = alpha, beta = beta)

        a = 0
        for i in xrange(len(X)):
            a += W[i] * F(X[i])

        b = mp.quad(lambda x: FW(x) * F(x), R)

        c = mp.fabs(a - b)

        if verbose:
            print(qtype, c, a, b)

        assert c < 1e-5

    run("legendre", lambda x: 1, [-1, 1])
    run("legendre01", lambda x: 1, [0, 1])
    run("hermite", lambda x: mp.exp(-x*x), [-mp.inf, mp.inf])
    run("laguerre", lambda x: mp.exp(-x), [0, mp.inf])
    run("glaguerre", lambda x: mp.sqrt(x)*mp.exp(-x), [0, mp.inf], alpha = 1 / mp.mpf(2))
    run("chebyshev1", lambda x: 1/mp.sqrt(1-x*x), [-1, 1])
    run("chebyshev2", lambda x: mp.sqrt(1-x*x), [-1, 1])
    run("jacobi", lambda x: (1-x)**(1/mp.mpf(3)) * (1+x)**(1/mp.mpf(5)), [-1, 1], alpha = 1 / mp.mpf(3), beta = 1 / mp.mpf(5) )
Exemple #11
0
 def w(sigma, t, T0dash):
     wterm1 = 1 + (sigma**2) / (T0dash**2)
     wterm2 = 1 + ((1 - sigma)**2) / (T0dash**2)
     wterm3 = (sigma - 1) * mp.log(wterm1) / 4.0 + nonnegative(
         (T0dash / 2.0) * mp.atan(sigma / T0dash) -
         sigma / 2.0) + 1 / (12.0 * (T0dash - 0.33))
     return mp.sqrt(wterm1) * mp.sqrt(wterm2) * mp.exp(wterm3)
Exemple #12
0
def createP_sigma(lx, ly, band):
    C = table.C_Sigma(ly / (2 / mp.sqrt(3)), lx / (mp.sqrt(3) / 2), band)
    #Values tabulated on a rectangular grid, flipped and compensated for.

    C = [
        C[0], C[1], C[2], C[3] / (3**(1 / 2)), C[4] / (3**(1 / 2)),
        C[5] / (3**(1 / 2))
    ]
    #For sqrt(3) normalisation, see paper for reference.

    f = lambda kx, ky, kz: C[0] * fi_As(lx, ly, kx, ky, kz) + C[1] * fi_Ax(
        lx, ly, kx, ky, kz) + C[2] * fi_Ay(lx, ly, kx, ky, kz) + C[3] * fi_Bs(
            lx, ly, kx, ky, kz) + C[4] * fi_Bx(lx, ly, kx, ky, kz) + C[
                5] * fi_By(lx, ly, kx, ky, kz)

    nrm = 1 / mp.sqrt(
        mp.conj(C[0]) * C[0] + mp.conj(C[1]) * C[1] + mp.conj(C[2]) * C[2] +
        3 *
        (mp.conj(C[3]) * C[3] + mp.conj(C[4]) * C[4] + mp.conj(C[5]) * C[5]) +
        2 * mp.re((mp.conj(C[0]) * C[3] * pss + mp.conj(C[0]) * C[4] * psx +
                   mp.conj(C[0]) * C[5] * psy + mp.conj(C[1]) * C[3] * psx +
                   mp.conj(C[1]) * C[4] * pxx + mp.conj(C[1]) * C[5] * pxy +
                   mp.conj(C[2]) * C[3] * psy + mp.conj(C[2]) * C[4] * pxy +
                   mp.conj(C[2]) * C[5] * pyy) *
                  (mp.exp(1j * mp.fdot([lx, ly, 0], R_1)) +
                   mp.exp(1j * mp.fdot([lx, ly, 0], R_2)) +
                   mp.exp(1j * mp.fdot([lx, ly, 0], R_3)))))

    return lambda kx, ky, kz: f(kx, ky, kz) * nrm
Exemple #13
0
    def jac_ortho_basis_at_mp(self, p, q, r):
        a = 2 * p / (1 - r) if r != 1 else 0
        b = 2 * q / (1 - r) if r != 1 else 0
        c = r

        sk = [mp.mpf(2) ** (-k - 0.25) * mp.sqrt(k + 0.5) for k in range(self.order)]
        fc = [s * jp for s, jp in zip(sk, jacobi(self.order - 1, 0, 0, a))]
        gc = [s * jp for s, jp in zip(sk, jacobi(self.order - 1, 0, 0, b))]

        dfc = [s * jp for s, jp in zip(sk, jacobi_diff(self.order - 1, 0, 0, a))]
        dgc = [s * jp for s, jp in zip(sk, jacobi_diff(self.order - 1, 0, 0, b))]

        ob = []
        for i, (fi, dfi) in enumerate(zip(fc, dfc)):
            for j, (gj, dgj) in enumerate(zip(gc, dgc)):
                h = jacobi(self.order - max(i, j) - 1, 2 * (i + j + 1), 0, c)
                dh = jacobi_diff(self.order - max(i, j) - 1, 2 * (i + j + 1), 0, c)

                for k, (hk, dhk) in enumerate(zip(h, dh)):
                    ck = mp.sqrt(2 * (k + j + i) + 3)

                    tmp = (1 - c) ** (i + j - 1) if i + j > 0 else 1

                    pijk = 2 * tmp * dfi * gj * hk
                    qijk = 2 * tmp * fi * dgj * hk
                    rijk = (
                        tmp * (a * dfi * gj + b * fi * dgj - (i + j) * fi * gj) * hk
                        + (1 - c) ** (i + j) * fi * gj * dhk
                    )

                    ob.append([ck * pijk, ck * qijk, ck * rijk])

        return ob
Exemple #14
0
def xdipole_wigner3j_recurrence(l, wig_1llp1_000, wig_1llm1_000,
                                wig_1llp1_1m10, wig_1llm1_1m10):
    #routine for computing successive Wigner3j symbols for x-polarized dipole based on recurrence
    #wig_1llp1_000 stores wigner symbols of the form (1 l l+1 ; 0 0 0)
    #wig_1llm1_000 stores wigner symbols of the form (1 l l-1 ; 0 0 0)
    mp.dps = mp.dps * 2
    if len(wig_1llp1_000) < 2:
        #the m1=m2=m3=0 wigner3j symbols
        wig_1llp1_000.clear()
        wig_1llm1_000.clear()

        wig_1llp1_000.extend([
            mp.mpf(wigner_3j(1, 1, 2, 0, 0, 0).evalf(mp.dps)),
            mp.mpf(wigner_3j(1, 2, 3, 0, 0, 0).evalf(mp.dps))
        ])
        wig_1llm1_000.extend([
            mp.mpf(wigner_3j(1, 1, 0, 0, 0, 0).evalf(mp.dps)),
            mp.mpf(wigner_3j(1, 2, 1, 0, 0, 0).evalf(mp.dps))
        ])

        #the m1=1, m2=-1, m3=0 wigner3j symbols
        wig_1llp1_1m10.clear()
        wig_1llm1_1m10.clear()

        wig_1llp1_1m10.extend([
            mp.mpf(wigner_3j(1, 1, 2, 1, -1, 0).evalf(mp.dps)),
            mp.mpf(wigner_3j(1, 2, 3, 1, -1, 0).evalf(mp.dps))
        ])

        wig_1llm1_1m10.extend([
            mp.mpf(wigner_3j(1, 1, 0, 1, -1, 0).evalf(mp.dps)),
            mp.mpf(wigner_3j(1, 2, 1, 1, -1, 0).evalf(mp.dps))
        ])

    i = len(wig_1llp1_000)
    while i < l:
        i = i + 1
        mp_i = mp.mpf(i)

        wig_1llm1_000.append(-mp.sqrt(mp_i * (2 * mp_i - 3) /
                                      ((mp_i - 1) * (2 * mp_i + 1))) *
                             wig_1llp1_000[i - 3])
        wig_1llp1_000.append(-mp.sqrt(
            (2 * mp_i - 1) * (mp_i + 1) / (mp_i * (2 * mp_i + 3))) *
                             wig_1llm1_000[i - 1])

        wig_1llm1_1m10.append(
            (wig3j_j2rec_j2m1_factor(1, i, i - 1, 1, -1, 0) *
             wig3j_j2rec_j2m1_factor(1, i - 1, i - 1, 1, -1, 0) +
             wig3j_j2rec_j2m2_factor(1, i, i - 1, 1, -1, 0)) *
            wig_1llp1_1m10[i - 1 - 2])

        wig_1llp1_1m10.append(
            (wig3j_j3rec_j3m1_factor(1, i, i + 1, 1, -1, 0) *
             wig3j_j3rec_j3m1_factor(1, i, i, 1, -1, 0) +
             wig3j_j3rec_j3m2_factor(1, i, i + 1, 1, -1, 0)) *
            wig_1llm1_1m10[i - 1])

    mp.dps = mp.dps // 2
def XBTZ_n(n, RA, RB, rh, l, pm1, Om, lam, tau0, width, deltaphi=0, isP=False):
    bA = mp.sqrt(RA**2 - rh**2) / l
    bB = mp.sqrt(RB**2 - rh**2) / l
    tau0 *= bA
    width *= bA

    return -lam**2*bA*bB * (Xn_minus(n,RA,RB,rh,l,pm1,Om,lam,tau0,width,deltaphi,isP)\
                            - pm1*Xn_plus(n,RA,RB,rh,l,pm1,Om,lam,tau0,width,deltaphi,isP))
Exemple #16
0
def check_xdipole_spherical_expansion(k, R, xp, yp, zp, dist):
    print("original xdipole field function")
    print(xdipole_field(k, 0, 0, -R - dist, xp, yp, zp))
    print("spherical wave expansion dipole field")
    print(xdipole_field_from_spherical_wave(k, 0, 0, -R - dist, xp, yp, zp))

    field = lambda x, y, z: xdipole_field(k, 0, 0, -R - dist, x, y, z)
    fnormsqr = get_field_normsqr(R, field)
    print(fnormsqr)

    wig_1llp1_000 = []
    wig_1llm1_000 = []
    wig_1llp1_1m10 = []
    wig_1llm1_1m10 = []  #setup wigner3j lists
    xdipole_wigner3j_recurrence(2, wig_1llp1_000, wig_1llm1_000,
                                wig_1llp1_1m10, wig_1llm1_1m10)

    cs = []
    cnormsqr = 0.0
    l = 0
    while (fnormsqr - cnormsqr) / fnormsqr > 1e-4:
        l += 1
        #cl = get_real_RgNM_l_coeffs_for_xdipole_field(l,k,R+dist, wig_1llp1_000,wig_1llm1_000,wig_1llp1_1m10,wig_1llm1_1m10)
        cl = get_normalized_real_RgNM_l_coeffs_for_xdipole_field(
            l, k, R, dist, wig_1llp1_000, wig_1llm1_000, wig_1llp1_1m10,
            wig_1llm1_1m10)
        cs.extend(cl)
        #        rhoM = mp_rho_M(l,k*R)
        #        rhoN = mp_rho_N(l,k*R)
        #        rhol = [rhoM, rhoM, rhoN, rhoN]

        #cnormsqr += mp.re( np.sum(np.conjugate(cl)*cl * rhol / (2*k**3)) )#factor of 2 since here m!=0
        cnormsqr += mp.re(np.sum(np.conjugate(cl) * cl))
#        print(cnormsqr)

    expfield1 = np.array([mp.zero, mp.zero, mp.zero])
    for i in range(1, l + 1):

        RgMe_field = get_rgM(k, xp, yp, zp, i, 1, 0)
        RgMo_field = get_rgM(k, xp, yp, zp, i, 1, 1)
        RgNe_field = get_rgN(k, xp, yp, zp, i, 1, 0)
        RgNo_field = get_rgN(k, xp, yp, zp, i, 1, 1)

        #        expfield1 += (RgMe_field*cs[4*i-4] + RgMo_field*cs[4*i-3] +
        #                      RgNe_field*cs[4*i-2] + RgNo_field*cs[4*i-1])

        rhoM = mp_rho_M(i, k * R)
        rhoN = mp_rho_N(i, k * R)
        normM = mp.sqrt(rhoM / (2 * k**3))
        normN = mp.sqrt(rhoN / (2 * k**3))
        expfield1 += (RgMe_field * cs[4 * i - 4] / normM +
                      RgMo_field * cs[4 * i - 3] / normM +
                      RgNe_field * cs[4 * i - 2] / normN +
                      RgNo_field * cs[4 * i - 1] / normN)

    print("expansion field via real spherical waves is")
    print(expfield1)
    print(cs)
Exemple #17
0
def _CalculateLeastUpperBoundInoperativeInterval(x0, x1, v0, v1, vm, am):
    # All input must already be of mp.mpf type
    d = x1 - x0
    temp1 = Prod([
        number('2'),
        Neg(Sqr(am)),
        Sub(Prod([number('2'), am, d]), Add(Sqr(v0), Sqr(v1)))
    ])
    if temp1 < zero:
        T0 = number('-1')
        T1 = number('-1')
    else:
        term1 = mp.fdiv(Add(v0, v1), am)
        term2 = mp.fdiv(mp.sqrt(temp1), Sqr(am))
        T0 = Add(term1, term2)
        T1 = Sub(term1, term2)

    temp2 = Prod([
        number('2'),
        Sqr(am),
        Add(Prod([number('2'), am, d]), Add(Sqr(v0), Sqr(v1)))
    ])
    if temp2 < zero:
        T2 = number('-1')
        T3 = number('-1')
    else:
        term1 = Neg(mp.fdiv(Add(v0, v1), am))
        term2 = mp.fdiv(mp.sqrt(temp2), Sqr(am))
        T2 = Add(term1, term2)
        T3 = Sub(term1, term2)

    newDuration = max(max(T0, T1), max(T2, T3))
    if newDuration > zero:
        dStraight = Prod([pointfive, Add(v0, v1), newDuration])
        if Sub(d, dStraight) > 0:
            amNew = am
            vmNew = vm
        else:
            amNew = -am
            vmNew = -vm

        # import IPython; IPython.embed()

        vp = Mul(pointfive, Sum([Mul(newDuration, amNew), v0,
                                 v1]))  # the peak velocity
        if (Abs(vp) > vm):
            dExcess = mp.fdiv(Sqr(Sub(vp, vmNew)), am)
            assert (dExcess > 0)
            deltaTime = mp.fdiv(dExcess, vm)
            newDuration = Add(newDuration, deltaTime)

        newDuration = Mul(newDuration, number('1.01'))  # add 1% safety bound
        return newDuration
    else:
        log.debug('Unable to calculate the least upper bound: T0 = {0}; T1 = {1}; T2 = {2}; T3 = {3}'.\
                  format(mp.nstr(T0, n=_prec), mp.nstr(T1, n=_prec), mp.nstr(T2, n=_prec), mp.nstr(T3, n=_prec)))
        return number('-1')
Exemple #18
0
def L_transform(j1,j2):
    
    d = mp.mpf(10**(-mp.dps+1))
    
    z0,z1 = j1*j2+1/(j1*j2), j1/j2+j2/j1
    jp = d + mp.sqrt(z1)/mp.sqrt(z0)
    dF = mp.log(mp.sqrt(z1)*mp.sqrt(z0))
    
    return jp,dF
Exemple #19
0
def RSZ_upto_c1(x):
    x = mp.mpf(x.real)
    tau = mp.sqrt(x/(2*PI))
    N = int(tau.real)
    p = tau-N
    running_sum=0
    for n in range(1,N+1):
        running_sum += mp.cos(RStheta(x) - x*mp.log(n))/mp.sqrt(n)
    return (2*running_sum + mp.power(-1,N-1)*mp.power(tau,-0.5)*(c0(p) - (1/tau)*c1(p))).real
Exemple #20
0
def RSZ_plain(x):
    x = mp.mpf(x.real)
    tau = mp.sqrt(x / (2 * mp.pi()))
    N = int(tau.real)
    z = 2 * (x - N) - 1
    running_sum = 0
    for n in range(1, N + 1):
        running_sum += mp.cos(RStheta(x) - (x * mp.log(n))) / mp.sqrt(n)
    return (2 * running_sum).real
Exemple #21
0
def wig3j_j2rec_j2m2_factor(j1, j2, j3, m1, m2, m3):
    num = -j2 * mp.sqrt(
        (j2 - m2 - 1) * (j2 + m2 - 1) * (j1 - j2 + j3 + 2) *
        (-j1 + j2 + j3 - 1) * (j1 + j2 - j3 - 1) * (j1 + j2 + j3))

    denom = (j2 - 1) * mp.sqrt(
        (j2 - m2) * (j2 + m2) * (j1 - j2 + j3 + 1) * (-j1 + j2 + j3) *
        (j1 + j2 - j3) * (j1 + j2 + j3 + 1))
    return num / denom
Exemple #22
0
def wig3j_j3rec_j3m2_factor(j1, j2, j3, m1, m2, m3):
    num = -j3 * mp.sqrt(
        (j3 + m3 - 1) * (j3 - m3 - 1) * (-j1 + j2 + j3 - 1) *
        (j1 - j2 + j3 - 1) * (j1 + j2 - j3 + 2) * (j1 + j2 + j3))

    denom = (j3 - 1) * mp.sqrt(
        (j3 - m3) * (j3 + m3) * (-j1 + j2 + j3) * (j1 - j2 + j3) *
        (j1 + j2 - j3 + 1) * (j1 + j2 + j3 + 1))
    return num / denom
Exemple #23
0
def gauss_hermite(n):
    d = mp.matrix([mp.mpf('0.0') for _ in range(n)])
    e = [mp.sqrt(k / 2) for k in mp.arange(1, n)]
    e.append(mp.mpf('0.0'))
    e = mp.matrix(e)
    z = mp.eye(n)[0, :]

    tridiag_eigen(mp, d, e, z)
    z = mp.sqrt(mp.pi) * z.apply(lambda x: x**2)
    return d, z.T
Exemple #24
0
def integrand_deltaPdot_n(s, tau, n, R, rh, l, pm1, Om, lam, sig, deltaphi):
    Zm = mp.mpf(rh**2/(R**2-rh**2)\
                *(R**2/rh**2 * fp.cosh(rh/l * (deltaphi - 2*fp.pi*(n+1/2))) - 1))
    Zp = mp.mpf(rh**2/(R**2-rh**2)\
                *(R**2/rh**2 * fp.cosh(rh/l * (deltaphi - 2*fp.pi*(n+1/2))) + 1))
    K = lam**2 * rh / (2 * fp.pi * fp.sqrt(2) * l *
                       fp.sqrt(R**2 - rh**2)) * fp.exp(-tau**2 / 2 / sig**2)
    return K * fp.exp(-(tau-s)**2/2/sig**2) * fp.exp(-fp.j*Om*s)\
             * ( 1/fp.sqrt(Zm + mp.cosh(rh/l/mp.sqrt(R**2-rh**2) * s))\
                - pm1*1/fp.sqrt(Zp + mp.cosh(rh/l/mp.sqrt(R**2-rh**2) * s)) )
Exemple #25
0
def Ht_Effective(z, t):
    """
    This uses the effective approximation of H_t from Terry's blog
    :param z: point at which H_t is computed
    :param t: the "time" parameter
    :return: H_t as a sum of two terms that are analogous to A and B, but now also with an efffective error bound (returned as percentage of |H_t|
    """
    z, t = mp.mpc(z), mp.mpc(t)
    sigma = (1 - z.imag) / 2.0
    T = (z.real) / 2.0
    Tdash = T + t * mp.pi() / 8.0
    s1 = sigma + 1j * T
    s2 = 1 - sigma + 1j * T
    N = int((mp.sqrt(Tdash / (2 * mp.pi()))).real)

    alph1 = alpha1(s1)
    alph2 = alpha1(s2).conjugate()
    A0_expo = (t / 4.0) * alph1 * alph1
    B0_expo = (t / 4.0) * alph2 * alph2
    H01_est1 = H01(s1)
    H01_est2 = H01(s2).conjugate()

    #begin main estimate block
    A0 = mp.exp(A0_expo) * H01_est1
    B0 = mp.exp(B0_expo) * H01_est2
    A_sum = 0.0
    B_sum = 0.0
    for n in range(1, N + 1):
        A_sum += 1 / mp.power(n, s1 + (t / 2.0) * alph1 -
                              (t / 4.0) * mp.log(n))
        B_sum += 1 / mp.power(
            n, 1 - s1 + (t / 2.0) * alph2 - (t / 4.0) * mp.log(n))
    A = A0 * A_sum
    B = B0 * B_sum
    H = (A + B) / 8.0
    #end main estimate block

    #begin error block
    A0_err_expo = (t / 4.0) * (abs(alph1)**2)  #A0_expo.real may also work
    B0_err_expo = (t / 4.0) * (abs(alph2)**2)  #B0_expo.real may also work
    epserr_1 = mp.exp(A0_err_expo) * abs(H01_est1) * abs(eps_err(s1, t)) / (
        (T - 3.33) * 8.0)
    epserr_2 = mp.exp(B0_err_expo) * abs(H01_est2) * abs(eps_err(s2, t)) / (
        (T - 3.33) * 8.0)
    epserr = epserr_1 + epserr_2

    C0 = mp.sqrt(mp.pi()) * mp.exp(-1 * (t / 64.0) * (mp.pi()**2)) * mp.power(
        Tdash, 1.5) * mp.exp(-1 * mp.pi() * T / 4.0)
    C = C0 * vwf_err(s1, t) / 8.0
    toterr = epserr + C
    #print(epserr_1, epserr_2, C0, vwf_err(s1, t), C, toterr.real)
    #end error block

    if z.imag == 0: return (H.real, toterr.real / abs(H.real))
    else: return (H, toterr.real / abs(H))
Exemple #26
0
    def __init__(self, npts):
        if not mp.isint(mp.sqrt(npts)):
            raise ValueError('Invalid number of points for quad rule')

        rulecls = subclass_where(BaseLineQuadRule, name=self.name)
        rule = rulecls(int(mp.sqrt(npts)))

        self.points = [(i, j) for j in rule.points for i in rule.points]

        if hasattr(rule, 'weights'):
            self.weights = [i*j for j in rule.weights for i in rule.weights]
def XGEON_integrand_nBA(y, n, RA, RB, rh, l, pm1, Om, lam, sig, deltaphi):
    bA = mp.sqrt(RA**2 - rh**2) / l
    bB = mp.sqrt(RB**2 - rh**2) / l
    K = 1
    alp2 = bA**2 * bB**2 / 2 / (bA**2 + bB**2) / sig**2
    bet2 = (bA + bB) * bA * bB / (bA**2 + bB**2)
    E = (bB - bA) / fp.sqrt(2) / fp.sqrt(bB**2 + bA**2) * (
        (bB + bA) * y / 2 / sig + fp.j * sig * Om)

    return K*mp.exp(-alp2*y**2)*mp.exp(-fp.j*bet2*Om*y) *fp.erfc(E) \
        * XGEON_denoms_n(y,n,RA,RB,rh,l,pm1,Om,lam,sig,deltaphi)
Exemple #28
0
def _CalculateLeastUpperBoundInoperativeInterval(x0, x1, v0, v1, vm, am):
    # All input must already be of mp.mpf type
    d = x1 - x0
    temp1 = Prod([number('2'), Neg(Sqr(am)), Sub(Prod([number('2'), am, d]), Add(Sqr(v0), Sqr(v1)))])
    if temp1 < zero:
        T0 = number('-1')
        T1 = number('-1')
    else:
        term1 = mp.fdiv(Add(v0, v1), am)
        term2 = mp.fdiv(mp.sqrt(temp1), Sqr(am))
        T0 = Add(term1, term2)
        T1 = Sub(term1, term2)

    temp2 = Prod([number('2'), Sqr(am), Add(Prod([number('2'), am, d]), Add(Sqr(v0), Sqr(v1)))])
    if temp2 < zero:
        T2 = number('-1')
        T3 = number('-1')
    else:
        term1 = Neg(mp.fdiv(Add(v0, v1), am))
        term2 = mp.fdiv(mp.sqrt(temp2), Sqr(am))
        T2 = Add(term1, term2)
        T3 = Sub(term1, term2)

    newDuration = max(max(T0, T1), max(T2, T3))
    if newDuration > zero:
        dStraight = Prod([pointfive, Add(v0, v1), newDuration])
        if Sub(d, dStraight) > 0:
            amNew = am
            vmNew = vm
        else:
            amNew = -am
            vmNew = -vm

        # import IPython; IPython.embed()

        vp = Mul(pointfive, Sum([Mul(newDuration, amNew), v0, v1])) # the peak velocity
        if (Abs(vp) > vm):
            dExcess = mp.fdiv(Sqr(Sub(vp, vmNew)), am)
            assert(dExcess > 0)
            deltaTime = mp.fdiv(dExcess, vm)
            newDuration = Add(newDuration, deltaTime)

        log.debug('Calculation successful: T0 = {0}; T1 = {1}; T2 = {2}; T3 = {3}'.format(mp.nstr(T0, n=_prec), mp.nstr(T1, n=_prec), mp.nstr(T2, n=_prec), mp.nstr(T3, n=_prec)))
        
        newDuration = Mul(newDuration, number('1.01')) # add 1% safety bound
        return newDuration
    else:
        if (FuzzyEquals(x0, x1, epsilon) and FuzzyZero(v0, epsilon) and FuzzyZero(v1, epsilon)):
            # t = 0 is actually a correct solution
            newDuration = 0
            return newDuration
        log.debug('Unable to calculate the least upper bound: T0 = {0}; T1 = {1}; T2 = {2}; T3 = {3}'.\
                  format(mp.nstr(T0, n=_prec), mp.nstr(T1, n=_prec), mp.nstr(T2, n=_prec), mp.nstr(T3, n=_prec)))
        return number('-1')
Exemple #29
0
 def w(sigma, s, t):
     T = s.imag
     T0 = T
     T0dash = T0 + mp.pi() * t / 8.0
     Tdash = T + mp.pi() * t / 8.0
     wterm1 = 1 + (sigma**2) / (T0dash**2)
     wterm2 = 1 + ((1 - sigma)**2) / (T0dash**2)
     wterm3 = (sigma - 1) * mp.log(wterm1) / 4.0 + nonnegative(
         (T0dash / 2.0) * mp.atan(sigma / T0dash) -
         sigma / 2.0) + 1 / (12.0 * (Tdash - 0.33))
     return mp.sqrt(wterm1) * mp.sqrt(wterm2) * mp.exp(wterm3)
Exemple #30
0
def z_x123_frm_m(N, m):
    """Function to get x1, x2 and x3 (eq 3, 5 and 6, [McNamara93]_)."""
    M = -ellipk(m) / N
    snMM = ellipfun('sn', u= -M, m=m)
    snM = ellipfun('sn', u=M, m=m)
    cnM = ellipfun('cn', u=M, m=m)
    dnM = ellipfun('dn', u=M, m=m)
    znM = z_zn(M, m)
    x3 = snMM
    x1 = x3 * mp.sqrt(1 - m) / dnM
    x2 = x3 * mp.sqrt(1 - (cnM * znM) / (snM * dnM))  
    return x1, x2, x3
Exemple #31
0
def z_x123_frm_m(N, m):
    """Function to get x1, x2 and x3 (eq 3, 5 and 6, [McNamara93]_)."""
    M = -ellipk(m) / N
    snMM = ellipfun('sn', u=-M, m=m)
    snM = ellipfun('sn', u=M, m=m)
    cnM = ellipfun('cn', u=M, m=m)
    dnM = ellipfun('dn', u=M, m=m)
    znM = z_zn(M, m)
    x3 = snMM
    x1 = x3 * mp.sqrt(1 - m) / dnM
    x2 = x3 * mp.sqrt(1 - (cnM * znM) / (snM * dnM))
    return x1, x2, x3
def XGEON_denoms_n(y, n, RA, RB, rh, l, pm1, Om, lam, sig, deltaphi):
    bA = mp.sqrt(RA**2 - rh**2) / l
    bB = mp.sqrt(RB**2 - rh**2) / l
    Zm = rh**2 / l**2 / bA / bB * (
        RA * RB / rh**2 * mp.cosh(rh / l * (deltaphi - 2 * mp.pi *
                                            (n + 1 / 2))) - 1)
    # Z-minus
    Zp = rh**2 / l**2 / bA / bB * (
        RA * RB / rh**2 * mp.cosh(rh / l * (deltaphi - 2 * mp.pi *
                                            (n + 1 / 2))) + 1)
    # Z-plus
    return 1 / mp.sqrt(Zm + mp.cosh(y)) - pm1 / mp.sqrt(Zp + mp.cosh(y))
Exemple #33
0
def test_laguerre_mpmath():
    mp.dps = 51
    scheme = quadpy.e1r.gauss_laguerre(2, mode="mpmath")

    tol = 1.0e-50

    x1 = 2 - mp.sqrt(2)
    x2 = 2 + mp.sqrt(2)
    assert (abs(scheme.points - [x1, x2]) < tol).all()

    w1 = (2 + mp.sqrt(2)) / 4
    w2 = (2 - mp.sqrt(2)) / 4
    assert (abs(scheme.weights - [w1, w2]) < tol).all()
Exemple #34
0
def f02(y, n, R, rh, l, pm1, Om, lam, sig):
    K = lam**2 * sig / 2 / fp.sqrt(2 * fp.pi)
    a = (R**2 - rh**2) * l**2 / 4 / sig**2 / rh**2
    b = fp.sqrt(R**2 - rh**2) * Om * l / rh
    Zp = mp.mpf((R**2 + rh**2) / (R**2 - rh**2))
    if Zp - mp.cosh(y) > 0:
        return fp.mpf(K * mp.exp(-a * y**2) * mp.cos(b * y) /
                      mp.sqrt(Zp - mp.cosh(y)))
    elif Zp - mp.cosh(y) < 0:
        return fp.mpf(-K * mp.exp(-a * y**2) * mp.sin(b * y) /
                      mp.sqrt(mp.cosh(y) - Zp))
    else:
        return 0
Exemple #35
0
def test_laguerre_mpmath():
    scheme = quadpy.e1r.GaussLaguerre(2, mode="mpmath", decimal_places=51)

    tol = 1.0e-50

    x1 = 2 - mp.sqrt(2)
    x2 = 2 + mp.sqrt(2)
    assert (abs(scheme.points - [x1, x2]) < tol).all()

    w1 = (2 + mp.sqrt(2)) / 4
    w2 = (2 - mp.sqrt(2)) / 4
    assert (abs(scheme.weights - [w1, w2]) < tol).all()
    return
Exemple #36
0
def fn1(y, n, R, rh, l, pm1, Om, lam, sig):
    K = lam**2 * sig / 2 / fp.sqrt(2 * fp.pi)
    a = (R**2 - rh**2) * l**2 / 4 / sig**2 / rh**2
    b = fp.sqrt(R**2 - rh**2) * Om * l / rh
    Zm = mp.mpf(rh**2 / (R**2 - rh**2) *
                (R**2 / rh**2 * fp.cosh(2 * fp.pi * rh / l * n) - 1))
    if Zm == mp.cosh(y):
        return 0
    elif Zm - fp.cosh(y) > 0:
        return fp.mpf(K * mp.exp(-a * y**2) * mp.cos(b * y) /
                      mp.sqrt(Zm - mp.cosh(y)))
    else:
        return fp.mpf(-K * mp.exp(-a * y**2) * mp.sin(b * y) /
                      mp.sqrt(mp.cosh(y) - Zm))
Exemple #37
0
    def ortho_basis_at_mp(self, p, q, r):
        sk = [mp.sqrt(k + 0.5) for k in range(self.order)]
        pa = [c * jp for c, jp in zip(sk, jacobi(self.order - 1, 0, 0, p))]
        pb = [c * jp for c, jp in zip(sk, jacobi(self.order - 1, 0, 0, q))]
        pc = [c * jp for c, jp in zip(sk, jacobi(self.order - 1, 0, 0, r))]

        return [pi * pj * pk for pi in pa for pj in pb for pk in pc]
Exemple #38
0
def _hex_orthob_at(order, p, q, r):
    sk = [mp.sqrt(k + 0.5) for k in xrange(order)]
    pa = [c*jp for c, jp in zip(sk, jacobi(order - 1, 0, 0, p))]
    pb = [c*jp for c, jp in zip(sk, jacobi(order - 1, 0, 0, q))]
    pc = [c*jp for c, jp in zip(sk, jacobi(order - 1, 0, 0, r))]

    return [pi*pj*pk for pi in pa for pj in pb for pk in pc]
Exemple #39
0
def _pri_orthob_at(order, p, q, r):
    a = 2*(1 + p)/(1 - q) - 1 if q != 1 else 0
    b = q
    c = r

    pab = []
    for i, pi in enumerate(jacobi(order - 1, 0, 0, a)):
        ci = (1 - b)**i / 2**(i + 1)

        for j, pj in enumerate(jacobi(order - i - 1, 2*i + 1, 0, b)):
            cij = mp.sqrt((2*i + 1)*(2*i + 2*j + 2))*ci

            pab.append(cij*pi*pj)

    sk = [mp.sqrt(k + 0.5) for k in xrange(order)]
    pc = [s*jp for s, jp in zip(sk, jacobi(order - 1, 0, 0, c))]

    return [pij*pk for pij in pab for pk in pc]
Exemple #40
0
    def jac_ortho_basis_at_mp(self, p, q):
        sk = [mp.sqrt(k + 0.5) for k in range(self.order)]
        pa = [c * jp for c, jp in zip(sk, jacobi(self.order - 1, 0, 0, p))]
        pb = [c * jp for c, jp in zip(sk, jacobi(self.order - 1, 0, 0, q))]

        dpa = [c * jp for c, jp in zip(sk, jacobi_diff(self.order - 1, 0, 0, p))]
        dpb = [c * jp for c, jp in zip(sk, jacobi_diff(self.order - 1, 0, 0, q))]

        return [[dpi * pj, pi * dpj] for pi, dpi in zip(pa, dpa) for pj, dpj in zip(pb, dpb)]
Exemple #41
0
def z_x123_frm_m(N, m):
    r"""
    Function to get x1, x2 and x3 (eq 3, 5 and 6, [McNamara93]_).
    
    :param N:    Order of the Zolotarev polynomial
    :param m:    m is the elliptic parameter (not the modulus k and not the nome q)
                  
    :rtype:      Returns [x1,x2,x3] ... where x1, x2, and x3 are defined in Fig. 1, [McNamara93]_
    """
    M = -ellipk(m) / N
    snMM = ellipfun('sn', u= -M, m=m)
    snM = ellipfun('sn', u=M, m=m)
    cnM = ellipfun('cn', u=M, m=m)
    dnM = ellipfun('dn', u=M, m=m)
    znM = z_zn(M, m)
    x3 = snMM
    x1 = x3 * mp.sqrt(1 - m) / dnM
    x2 = x3 * mp.sqrt(1 - (cnM * znM) / (snM * dnM))  
    return x1, x2, x3
Exemple #42
0
    def ortho_basis_at_mp(self, p, q, r):
        q = q if q != 1 else q + mp.eps

        a = 2*(1 + p)/(1 - q) - 1
        b = q
        c = r

        pab = []
        for i, pi in enumerate(jacobi(self.order - 1, 0, 0, a)):
            ci = (1 - b)**i / 2**(i + 1)

            for j, pj in enumerate(jacobi(self.order - i - 1, 2*i + 1, 0, b)):
                cij = mp.sqrt((2*i + 1)*(2*i + 2*j + 2))*ci

                pab.append(cij*pi*pj)

        sk = [mp.sqrt(k + 0.5) for k in xrange(self.order)]
        pc = [s*jp for s, jp in zip(sk, jacobi(self.order - 1, 0, 0, c))]

        return [pij*pk for pij in pab for pk in pc]
Exemple #43
0
def _tet_orthob_at(order, p, q, r):
    a = -2*(1 + p)/(q + r) - 1 if q + r != 0 else 0
    b = 2*(1 + q)/(1 - r) - 1 if r != 1 else 0
    c = r

    ob = []
    for i, pi in enumerate(jacobi(order - 1, 0, 0, a)):
        ci = mp.mpf(2)**(-2*i - 1.5)*mp.sqrt(4*i + 2)*(1 - b)**i

        for j, pj in enumerate(jacobi(order - i - 1, 2*i + 1, 0, b)):
            cj = mp.sqrt(i + j + 1)*2**-j*(1 - c)**(i + j)
            cij = ci*cj
            pij = pi*pj

            jp = jacobi(order - i - j - 1, 2*(i + j + 1), 0, c)
            for k, pk in enumerate(jp):
                ck = mp.sqrt(2*(k + j + i) + 3)

                ob.append(cij*ck*pij*pk)

    return ob
Exemple #44
0
    def ortho_basis_at_mp(self, p, q, r):
        a = -2 * (1 + p) / (q + r) - 1 if r != -q else -1
        b = 2 * (1 + q) / (1 - r) - 1 if r != 1 else -1
        c = r

        ob = []
        for i, pi in enumerate(jacobi(self.order - 1, 0, 0, a)):
            ci = mp.mpf(2) ** (-2 * i - 1) * mp.sqrt(2 * i + 1) * (1 - b) ** i

            for j, pj in enumerate(jacobi(self.order - i - 1, 2 * i + 1, 0, b)):
                cj = mp.sqrt(i + j + 1) * 2 ** -j * (1 - c) ** (i + j)
                cij = ci * cj
                pij = pi * pj

                jp = jacobi(self.order - i - j - 1, 2 * (i + j + 1), 0, c)
                for k, pk in enumerate(jp):
                    ck = mp.sqrt(2 * (k + j + i) + 3)

                    ob.append(cij * ck * pij * pk)

        return ob
Exemple #45
0
    def jac_ortho_basis_at_mp(self, p, q, r):
        a = -2 * (1 + p) / (q + r) - 1 if r != -q else -1
        b = 2 * (1 + q) / (1 - r) - 1 if r != 1 else -1
        c = r

        f = jacobi(self.order - 1, 0, 0, a)
        df = jacobi_diff(self.order - 1, 0, 0, a)

        ob = []
        for i, (fi, dfi) in enumerate(zip(f, df)):
            ci = mp.mpf(2) ** (-2 * i - 1) * mp.sqrt(2 * i + 1)
            g = jacobi(self.order - i - 1, 2 * i + 1, 0, b)
            dg = jacobi_diff(self.order - i - 1, 2 * i + 1, 0, b)

            for j, (gj, dgj) in enumerate(zip(g, dg)):
                cj = mp.sqrt(i + j + 1) * 2 ** -j
                cij = ci * cj
                h = jacobi(self.order - i - j - 1, 2 * (i + j + 1), 0, c)
                dh = jacobi_diff(self.order - i - j - 1, 2 * (i + j + 1), 0, c)

                for k, (hk, dhk) in enumerate(zip(h, dh)):
                    ck = mp.sqrt(2 * (k + j + i) + 3)
                    cijk = cij * ck

                    tmp1 = (1 - c) ** (i + j - 1) if i + j > 0 else 1
                    tmp2 = tmp1 * (1 - b) ** (i - 1) if i > 0 else 1

                    pijk = 4 * tmp2 * dfi * gj * hk
                    qijk = 2 * (tmp2 * (-i * fi + (1 + a) * dfi) * gj + tmp1 * (1 - b) ** i * fi * dgj) * hk

                    rijk = (
                        2 * (1 + a) * tmp2 * dfi * gj * hk
                        + (1 + b) * tmp1 * (1 - b) ** i * fi * dgj * hk
                        + (1 - c) ** (i + j) * (1 - b) ** i * fi * gj * dhk
                        - (i * (1 + b) * tmp2 + (i + j) * tmp1 * (1 - b) ** i) * fi * gj * hk
                    )

                    ob.append([cijk * pijk, cijk * qijk, cijk * rijk])

        return ob
Exemple #46
0
def _Interpolate1DNoVelocityLimit(x0, x1, v0, v1, am):
    # Check types
    if type(x0) is not mp.mpf:
        x0 = mp.mpf("{:.15e}".format(x0))
    if type(x1) is not mp.mpf:
        x1 = mp.mpf("{:.15e}".format(x1))
    if type(v0) is not mp.mpf:
        v0 = mp.mpf("{:.15e}".format(v0))
    if type(v1) is not mp.mpf:
        v1 = mp.mpf("{:.15e}".format(v1))
    if type(am) is not mp.mpf:
        am = mp.mpf("{:.15e}".format(am))

    # Check inputs
    assert(am > zero)

    # Check for an appropriate acceleration direction of the first ramp
    d = Sub(x1, x0)
    dv = Sub(v1, v0)
    difVSqr = Sub(v1**2, v0**2)
    
    if Abs(dv) < epsilon:
        if Abs(d) < epsilon:
            # Stationary ramp
            ramp0 = Ramp(zero, zero, zero, x0)
            return ParabolicCurve([ramp0])

        else:
            dStraight = zero
    else:    
        dStraight = mp.fdiv(difVSqr, Prod([2, mp.sign(dv), am]))
    
    if IsEqual(d, dStraight):
        # With the given distance, v0 and v1 can be directly connected using max/min
        # acceleration. Here the resulting profile has only one ramp.
        a0 = mp.sign(dv) * am
        ramp0 = Ramp(v0, a0, mp.fdiv(dv, a0), x0)
        return ParabolicCurve([ramp0])

    sumVSqr = Add(v0**2, v1**2)
    sigma = mp.sign(Sub(d, dStraight))
    a0 = sigma * am # acceleration of the first ramp
    vp = sigma * mp.sqrt(Add(Mul(pointfive, sumVSqr), Mul(a0, d)))
    t0 = mp.fdiv(Sub(vp, v0), a0)
    t1 = mp.fdiv(Sub(vp, v1), a0)
    ramp0 = Ramp(v0, a0, t0, x0)    
    assert(IsEqual(ramp0.v1, vp)) # check soundness
    ramp1 = Ramp(vp, Neg(a0), t1)

    curve = ParabolicCurve([ramp0, ramp1])
    assert(IsEqual(curve.d, d)) # check soundness
    return curve
Exemple #47
0
    def ortho_basis_at_mp(self, p, q):
        a = 2 * (1 + p) / (1 - q) - 1 if q != 1 else -1
        b = q

        ob = []
        for i, pi in enumerate(jacobi(self.order - 1, 0, 0, a)):
            pa = pi * (1 - b) ** i

            for j, pj in enumerate(jacobi(self.order - i - 1, 2 * i + 1, 0, b)):
                cij = mp.sqrt((2 * i + 1) * (2 * i + 2 * j + 2)) / 2 ** (i + 1)

                ob.append(cij * pa * pj)

        return ob
Exemple #48
0
def _tri_orthob_at(order, p, q):
    a = 2*(1 + p)/(1 - q) - 1 if q != 1 else 0
    b = q

    ob = []
    for i, pi in enumerate(jacobi(order - 1, 0, 0, a)):
        pa = pi*(1 - b)**i

        for j, pj in enumerate(jacobi(order - i - 1, 2*i + 1, 0, b)):
            cij = mp.sqrt((2*i + 1)*(2*i + 2*j + 2)) / 2**(i + 1)

            ob.append(cij*pa*pj)

    return ob
Exemple #49
0
def z_Zolotarev(N, x, m):
    """Function to evaluate the Zolotarev polynomial (eq 1, [McNamara93]_)."""
    M = -ellipk(m) / N
    x3 = ellipfun('sn', u= -M, m=m)  
    xbar = x3 * mp.sqrt((x ** 2 - 1) / (x ** 2 - x3 ** 2)) # rearranged eq 21, [Levy70]_
    u = ellipf(mp.asin(xbar), m) # rearranged eq 20, [Levy70]_, asn(x) = F(asin(x)|m)     
    f = mp.cosh((N / 2) * mp.log(z_eta(M + u, m) / z_eta(M - u, m)))
    if (f.imag / f.real > 1e-10):
        print "imaginary part of the Zolotarev function is not negligible!"
        print "f_imaginary = ", f.imag
    else:
        if (x > 0): # no idea why I am doing this ... anyhow, it seems working
            f = -f.real  
        else:
            f = f.real        
    return f
Exemple #50
0
def SolveQuartic(a, b, c, d, e):
    """
    SolveQuartic solves a quartic (fouth order) equation of the form
            ax^4 + bx^3 + cx^2 + dx + e = 0.
    For the detail of formulae presented here, see https://en.wikipedia.org/wiki/Quartic_function
    """
    # Check types
    if type(a) is not mp.mpf:
        a = mp.mpf("{:.15e}".format(a))
    if type(b) is not mp.mpf:
        b = mp.mpf("{:.15e}".format(b))
    if type(c) is not mp.mpf:
        c = mp.mpf("{:.15e}".format(c))
    if type(d) is not mp.mpf:
        d = mp.mpf("{:.15e}".format(d))
    if type(e) is not mp.mpf:
        e = mp.mpf("{:.15e}".format(e))

    """
    # Working code (more readable but probably less precise)
    p = (8*a*c - 3*b*b)/(8*a*a)
    q = (b**3 - 4*a*b*c + 8*a*a*d)/(8*a*a*a)
    delta0 = c*c - 3*b*d + 12*a*e
    delta1 = 2*(c**3) - 9*b*c*d + 27*b*b*e + 27*a*d*d - 72*a*c*e
    Q = mp.nthroot(pointfive*(delta1 + mp.sqrt(delta1*delta1 - 4*mp.power(delta0, 3))), 3)
    S = pointfive*mp.sqrt(-mp.fdiv(mp.mpf('2'), mp.mpf('3'))*p + (one/(3*a))*(Q + delta0/Q))

    x1 = -b/(4*a) - S + pointfive*mp.sqrt(-4*S*S - 2*p + q/S)
    x2 = -b/(4*a) - S - pointfive*mp.sqrt(-4*S*S - 2*p + q/S)
    x3 = -b/(4*a) + S + pointfive*mp.sqrt(-4*S*S - 2*p - q/S)
    x4 = -b/(4*a) + S - pointfive*mp.sqrt(-4*S*S - 2*p - q/S)
    """
    p = mp.fdiv(Sub(Prod([number('8'), a, c]), Mul(number('3'), mp.power(b, 2))), Mul(number('8'), mp.power(a, 2)))
    q = mp.fdiv(Sum([mp.power(b, 3), Prod([number('-4'), a, b, c]), Prod([number('8'), mp.power(a, 2), d])]), Mul(8, mp.power(a, 3)))
    delta0 = Sum([mp.power(c, 2), Prod([number('-3'), b, d]), Prod([number('12'), a, e])])
    delta1 = Sum([Mul(2, mp.power(c, 3)), Prod([number('-9'), b, c, d]), Prod([number('27'), mp.power(b, 2), e]), Prod([number('27'), a, mp.power(d, 2)]), Prod([number('-72'), a, c, e])])
    Q = mp.nthroot(Mul(pointfive, Add(delta1, mp.sqrt(Add(mp.power(delta1, 2), Mul(number('-4'), mp.power(delta0, 3)))))), 3)
    S = Mul(pointfive, mp.sqrt(Mul(mp.fdiv(mp.mpf('-2'), mp.mpf('3')), p) + Mul(mp.fdiv(one, Mul(number('3'), a)), Add(Q, mp.fdiv(delta0, Q)))))

    # log.debug("p = {0}".format(mp.nstr(p, n=_prec)))
    # log.debug("q = {0}".format(mp.nstr(q, n=_prec)))
    # log.debug("delta0 = {0}".format(mp.nstr(delta0, n=_prec)))
    # log.debug("delta1 = {0}".format(mp.nstr(delta1, n=_prec)))
    # log.debug("Q = {0}".format(mp.nstr(Q, n=_prec)))
    # log.debug("S = {0}".format(mp.nstr(S, n=_prec)))

    x1 = Sum([mp.fdiv(b, Mul(number('-4'), a)), Neg(S), Mul(pointfive, mp.sqrt(Sum([Mul(number('-4'), mp.power(S, 2)), Mul(number('-2'), p), mp.fdiv(q, S)])))])
    x2 = Sum([mp.fdiv(b, Mul(number('-4'), a)), Neg(S), Neg(Mul(pointfive, mp.sqrt(Sum([Mul(number('-4'), mp.power(S, 2)), Mul(number('-2'), p), mp.fdiv(q, S)]))))])
    x3 = Sum([mp.fdiv(b, Mul(number('-4'), a)), S, Mul(pointfive, mp.sqrt(Sum([Mul(number('-4'), mp.power(S, 2)), Mul(number('-2'), p), Neg(mp.fdiv(q, S))])))])
    x4 = Sum([mp.fdiv(b, Mul(number('-4'), a)), S, Neg(Mul(pointfive, mp.sqrt(Sum([Mul(number('-4'), mp.power(S, 2)), Mul(number('-2'), p), Neg(mp.fdiv(q, S))]))))])
    
    return [x1, x2, x3, x4]
Exemple #51
0
    def jac_ortho_basis_at_mp(self, p, q):
        a = 2 * (1 + p) / (1 - q) - 1 if q != 1 else -1
        b = q

        f = jacobi(self.order - 1, 0, 0, a)
        df = jacobi_diff(self.order - 1, 0, 0, a)

        ob = []
        for i, (fi, dfi) in enumerate(zip(f, df)):
            g = jacobi(self.order - i - 1, 2 * i + 1, 0, b)
            dg = jacobi_diff(self.order - i - 1, 2 * i + 1, 0, b)

            for j, (gj, dgj) in enumerate(zip(g, dg)):
                cij = mp.sqrt((2 * i + 1) * (2 * i + 2 * j + 2)) / 2 ** (i + 1)

                tmp = (1 - b) ** (i - 1) if i > 0 else 1

                pij = 2 * tmp * dfi * gj
                qij = tmp * (-i * fi + (1 + a) * dfi) * gj + (1 - b) ** i * fi * dgj

                ob.append([cij * pij, cij * qij])

        return ob
def test_levin_3():
    mp.dps = 17
    z=mp.mpf(2)
    eps = mp.mpf(mp.eps)
    with mp.extraprec(7*mp.prec):  # we need copious amount of precision to sum this highly divergent series
        L = mp.levin(method = "levin", variant = "t")
        n, s = 0, 0
        while 1:
            s += (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n))
            n += 1
            v, e = L.step_psum(s)
            if e < eps:
                break
            if n > 1000: raise RuntimeError("iteration limit exceeded")
    eps = mp.exp(0.8 * mp.log(eps))
    exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
    # there is also a symbolic expression for the integral:
    #   exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi))
    err = abs(v - exact)
    assert err < eps
    w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)), [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)])
    err = abs(v - w)
    assert err < eps
def norm_q(prob):
    r"""
    A multi-precision calculation of the
    standard normal quantile function:

    .. math::

       \int_{-\infty}^{q(p)} \frac{e^{-z^2/2}}{\sqrt{2\pi}} \; dz = p

    where $p$ is `prob`.

    Parameters
    ----------

    prob : float

    Returns
    -------

    quantile : float

    """
    return np.array(mp.erfinv(2*prob-1)*mp.sqrt(2))
Exemple #54
0
def z_Zolotarev(N, x, m):
    r"""
    Function to evaluate the Zolotarev polynomial (eq 1, [McNamara93]_).
    
    :param N:    Order of the Zolotarev polynomial
    :param x:    The argument at which one would like to evaluate the Zolotarev polynomial
    :param m:    m is the elliptic parameter (not the modulus k and not the nome q)
                  
    :rtype:      Returns a float, the value of Zolotarev polynomial at x
    """
    M = -ellipk(m) / N
    x3 = ellipfun('sn', u= -M, m=m)  
    xbar = x3 * mp.sqrt((x ** 2 - 1) / (x ** 2 - x3 ** 2)) # rearranged eq 21, [Levy70]_
    u = ellipf(mp.asin(xbar), m) # rearranged eq 20, [Levy70]_, asn(x) = F(asin(x)|m)     
    f = mp.cosh((N / 2) * mp.log(z_eta(M + u, m) / z_eta(M - u, m)))
    if (f.imag / f.real > 1e-10):
        print "imaginary part of the Zolotarev function is not negligible!"
        print "f_imaginary = ", f.imag
    else:
        if (x > 0): # no idea why I am doing this ... anyhow, it seems working
            f = -f.real  
        else:
            f = f.real        
    return f
Yp = mp.matrix(f.size, 1)
Zc = mp.matrix(f.size, 1)
A = np.ndarray(f.size)
R = np.ndarray(f.size)
I = np.ndarray(f.size)
Gr = np.ndarray(f.size)
Gi = np.ndarray(f.size)

for n in range(f.size):
    Zap[n] = ZapA[n]*( i0(gammac[n]*a) / i1(gammac[n]*a) )
    Zbp[n] = ZbpA[n] * ((i0(gammac[n]*b) * k1(gammac[n]*c) + k0(gammac[n]*b)*i1(gammac[n]*c)) / ( i1(gammac[n]*c)*k1(gammac[n]*b) - i1(gammac[n]*b)*k1(gammac[n]*c) ) )
    ZL[n] = 1j*omega[n]*Lp
    YC[n] = 1j*omega[n]*Cp
    Zp[n] = Zap[n] + Zbp[n] + ZL[n]
    Yp[n] = YC[n] # + G[n]
    Zc[n] = mp.sqrt(Zp[n]/Yp[n])
    A[n] = mp.fabs(Zc[n])
    R[n] = mp.re(Zc[n])
    I[n] = mp.im(Zc[n])
    Gr[n] = mp.re(mp.sqrt(Zp[n]*Yp[n]))
    Gi[n] = mp.im(mp.sqrt(Zp[n]*Yp[n]))

fig = plt.figure()
plt.plot(f/10**6, A, label='Magnitude', color='red')
plt.xlabel('Frequency [MHz]')
plt.ylabel('Magnitude of Z$_{c}$ [$\Omega$]')
plt.legend()
plt.xlim([-0.3,100])
#plt.show()
fig2 = plt.figure()
plt.plot(f/10**6, R, label='Real Part', color='red')
Exemple #56
0
def dcurve(a, b, c):
    return a + b + c + 2 * mp.sqrt(a * b + b * c + c * a)
Exemple #57
0
# * Description:        AC.
# * http://en.wikipedia.org/wiki/Descartes%27_theorem
# ********************************/

from mpmath import mp


def dcurve(a, b, c):
    return a + b + c + 2 * mp.sqrt(a * b + b * c + c * a)


def dfs(a, b, c, depth):
    if depth == 10:
        return 0
    a, b, c = sorted([a, b, c])
    d = dcurve(a, b, c)
    if a == b == c:
        return 1 / d**2 + 3 * dfs(a, a, d, depth + 1)
    elif a == b != c:
        return 1 / d**2 + dfs(a, a, d, depth + 1) + 2 * dfs(b, c, d, depth + 1)
    elif a != b == c:
        return 1 / d**2 + dfs(b, c, d, depth + 1) + 2 * dfs(a, b, d, depth + 1)
    elif a != b != c:
        return 1 / d**2 + dfs(a, b, d, depth + 1) + dfs(a, c, d, depth + 1) + dfs(b, c, d, depth + 1)
    else:
        print("ERROR")

k0 = 1 + 2 / mp.sqrt(3)

print("Answer is %.8f" % (1 - (dfs(k0, k0, k0, 0) + 3 * dfs(k0, k0, -1, 0) + 3 / k0**2)))
Exemple #58
0
def _quad_orthob_at(order, p, q):
    sk = [mp.sqrt(k + 0.5) for k in xrange(order)]
    pa = [c*jp for c, jp in zip(sk, jacobi(order - 1, 0, 0, p))]
    pb = [c*jp for c, jp in zip(sk, jacobi(order - 1, 0, 0, q))]

    return [pi*pj for pi in pa for pj in pb]