Exemple #1
0
def closed_form(polynomial, roots, symbolic=False):
    '''
    A simple heuristic to check if an approximate root is close to some algebraically
    expressible number.
    :param symbolic: Return an exact symbolic representation (via sympy), for LaTeX
    '''
    x = []
    for root in roots:
        rl = mpmath.identify(root.real, tol=1e-4, maxcoeff=30)
        im = mpmath.identify(root.imag, tol=1e-4, maxcoeff=30)
        if not rl:
            rl = root.real if not symbolic else sympify(rl).evalf(5)
        if not im:
            im = root.imag if not symbolic else sympify(im).evalf(5)
        new = float(sympify(rl)) + float(sympify(im))*1j
        # Arbitrary roundoff
        if abs(polynomial(root)) > abs(polynomial(new)) or abs(polynomial(new)) < 1e-10:
            if symbolic:
                x.append(sympify(rl) + sympify(im) * 1j)
            else:
                x.append(new)
        else:
            if symbolic:
                x.append(sympify(root))
            else:
                x.append(root)
    return array(x)
Exemple #2
0
def inverse_symbolic(n, threshold=1e-5):
    rl = mpmath.identify(n.real, tol=1e-3, maxcoeff=30)
    im = mpmath.identify(n.imag, tol=1e-3, maxcoeff=30)
    if not rl or abs(n.real - (nsimplify(rl).evalf())) > threshold:
        rl = nsimplify(n.real).evalf(5)
    if not im or abs(n.imag - (nsimplify(im).evalf())) > threshold:
        im = nsimplify(n.imag).evalf(5)
    return (sympify(rl) + sympify(im) * 1j)
Exemple #3
0
def handleIdentify( result ):
    formula = identify( result )

    if formula is None:
        base = [ 'pi', 'e', 'euler' ]
        formula = identify( result, base )

    if formula is None:
        print( '    = [formula cannot be found]' )
    else:
        print( '    = ' + formula )
Exemple #4
0
def handleIdentify( result, file=sys.stdout ):
    '''Calls the mpmath identify function to try to identify a constant.'''
    formula = identify( result )

    if formula is None:
        base = [ 'pi', 'e', 'euler' ]
        formula = identify( result, base )

    if formula is None:
        print( '    = [formula cannot be found]', file=file )
    else:
        print( '    = ' + formula, file=file )
Exemple #5
0
 def nsimplify_real(x):
     orig = mpmath.mp.dps
     xv = x._to_mpmath(bprec)
     try:
         # We'll be happy with low precision if a simple fraction
         if not (tolerance or full):
             mpmath.mp.dps = 15
             rat = mpmath.findpoly(xv, 1)
             if rat is not None:
                 return Rational(-int(rat[1]), int(rat[0]))
         mpmath.mp.dps = prec
         newexpr = mpmath.identify(xv, constants=constants_dict,
                                   tol=tolerance, full=full)
         if not newexpr:
             raise ValueError
         if full:
             newexpr = newexpr[0]
         expr = sympify(newexpr)
         if x and not expr:  # don't let x become 0
             raise ValueError
         if expr.is_finite is False and xv not in [mpmath.inf, mpmath.ninf]:
             raise ValueError
         return expr
     finally:
         # even though there are returns above, this is executed
         # before leaving
         mpmath.mp.dps = orig
 def nsimplify_real(x):
     orig = mpmath.mp.dps
     xv = x._to_mpmath(bprec)
     try:
         # We'll be happy with low precision if a simple fraction
         if not (tolerance or full):
             mpmath.mp.dps = 15
             rat = mpmath.pslq([xv, 1])
             if rat is not None:
                 return Rational(-int(rat[1]), int(rat[0]))
         mpmath.mp.dps = prec
         newexpr = mpmath.identify(xv, constants=constants_dict,
             tol=tolerance, full=full)
         if not newexpr:
             raise ValueError
         if full:
             newexpr = newexpr[0]
         expr = sympify(newexpr)
         if x and not expr:  # don't let x become 0
             raise ValueError
         if expr.is_finite is False and not xv in [mpmath.inf, mpmath.ninf]:
             raise ValueError
         return expr
     finally:
         # even though there are returns above, this is executed
         # before leaving
         mpmath.mp.dps = orig
Exemple #7
0
def handleIdentify(result, file=sys.stdout):
    '''Calls the mpmath identify function to try to identify a constant.'''
    if isinstance(result, (list, RPNGenerator)):
        print('foo!', result)
        for i in list(result):
            print('i', i)
            handleIdentify(i)

        return

    formula = identify(result)

    if formula is None:
        base = ['pi', 'e', 'euler', 'sqrt(pi)', 'phi']
        formula = identify(result, base)

    if formula is None:
        print('    = [formula cannot be found]', file=file)
    else:
        print('    = ' + formula, file=file)
Exemple #8
0
def identify(a, abs_tol=1.0e-15):
    sols = mpmath.identify(a, ["pi"], tol=abs_tol, full=True)
    return list(set([sympify(sol) for sol in sols]))