Exemple #1
0
def save_nii_files(merged, image_pair, nii_res_dir, save_input_files):
    # Extract data if nii files
    try:
        merged = merged.get_data()
    except AttributeError:
        merged = nib.Nifti1Image(merged, affine=image_pair.affine)
    volumes = [merged, image_pair.image_obj, image_pair.labels_obj]
    labels = ["%s_PRED.nii.gz" % image_pair.id,
              "%s_IMAGE.nii.gz" % image_pair.id,
              "%s_LABELS.nii.gz" % image_pair.id]
    if not save_input_files:
        volumes = volumes[:1]
        labels = labels[:1]
        p = os.path.abspath(nii_res_dir)  # Save file directly in nii_res_dir
    else:
        # Create sub-folder under nii_res_dir
        p = os.path.join(nii_res_dir, image_pair.id)
    create_folders(p)

    for nii, fname in zip(volumes, labels):
        try:
            nib.save(nii, "%s/%s" % (p, fname))
        except AttributeError:
            # No labels file?
            pass
Exemple #2
0
def entry_func(args=None):

    args = get_argparser().parse_args(args)
    out_dir = os.path.abspath(os.path.abspath(args.out_dir))
    if os.path.exists(out_dir) and os.listdir(out_dir):
        from sys import exit
        print("Path '{}' already exists and is not empty!".format(
            args.out_dir))
        exit(1)
    create_folders([out_dir], create_deep=False)

    n_train, n_val, n_test = [args.N] * 3
    n_train = args.N_train or n_train
    n_val = args.N_val or n_val
    n_test = args.N_test or n_test

    np.random.seed(args.seed)
    for dataset, N in zip(["train", "val", "test"], [n_train, n_val, n_test]):
        if not N:
            continue
        else:
            print("[*] Creating dataset '{}' of {} samples".format(dataset, N))
            create_toy_dataset(N=N,
                               image_size=args.image_size,
                               out_dir=os.path.join(out_dir, dataset),
                               image_subdir=args.image_subdir,
                               label_subdir=args.label_subdir)
Exemple #3
0
def create_toy_dataset(N, image_size, out_dir, image_subdir, label_subdir):
    image_out_dir = os.path.join(out_dir, image_subdir)
    label_out_dir = os.path.join(out_dir, label_subdir)
    create_folders([out_dir, image_out_dir, label_out_dir])

    for img_id in range(N):
        print("--", img_id)
        file_name = "toy_data_{}.nii.gz".format(img_id)
        im_path = os.path.join(image_out_dir, file_name)
        lab_path = os.path.join(label_out_dir, file_name)
        image, label = create_toy_data_point(image_size)

        affine = np.eye(4)
        nib.save(nib.Nifti1Image(image, affine=affine), im_path)
        nib.save(nib.Nifti1Image(label, affine=affine), lab_path)
Exemple #4
0
def entry_func(args=None):
    # Get command line arguments
    args = get_argparser().parse_args(args)
    assert_args(args)

    # Get most important paths
    project_dir = os.path.abspath(args.project_dir)
    out_dir = os.path.abspath(args.out_dir)

    # Check if valid dir structures
    validate_folders(project_dir, out_dir,
                     overwrite=args.overwrite,
                     _continue=vars(args)["continue"])
    nii_res_dir = os.path.join(out_dir, "nii_files")
    create_folders(nii_res_dir, create_deep=True)

    # Get settings from YAML file
    hparams = load_hparams(project_dir)

    # Get dataset
    image_pair_loader, image_pair_dict = get_image_pair_loader(args, hparams,
                                                               out_dir)

    # Wait for PID to terminate before continuing, if specified
    if args.wait_for:
        await_PIDs(args.wait_for, check_every=120)

    # Set GPU device
    set_gpu_vis(args)

    # Get views
    views = np.load("%s/views.npz" % project_dir)["arr_0"]
    del hparams['fit']['views']

    # Prepare result dicts
    results, per_view_results = None, None
    if not args.no_eval:
        results, per_view_results = get_results_dicts(out_dir, views,
                                                      image_pair_dict,
                                                      hparams["build"]["n_classes"],
                                                      vars(args)["continue"])

    # Get model and load weights, assign to one or more GPUs
    model, weights_name = get_model(project_dir, hparams['build'])
    fusion_model = None
    if not args.sum_fusion:
        fusion_model = get_fusion_model(n_views=len(views),
                                        n_classes=hparams["build"]["n_classes"],
                                        project_dir=project_dir,
                                        weights_name=weights_name)

    run_predictions_and_eval(
        image_pair_loader=image_pair_loader,
        image_pair_dict=image_pair_dict,
        model=model,
        fusion_model=fusion_model,
        views=views,
        hparams=hparams,
        args=args,
        results=results,
        per_view_results=per_view_results,
        out_dir=out_dir,
        nii_res_dir=nii_res_dir
    )
    if not args.no_eval:
        # Write final results
        save_all(results, per_view_results, out_dir)