def build_groups(self, mpsnl, force_new=False, snlgroup_guess=None, testing_mode=False): # testing mode is used to see if something already exists in DB w/o adding it to the db match_found = False if not force_new: if snlgroup_guess: sgp = self.snlgroups.find_one({'snlgroup_id': snlgroup_guess}) snlgroup = SNLGroup.from_dict(sgp) match_found = self._add_if_belongs(snlgroup, mpsnl, testing_mode) if not match_found: # look at all potential matches for entry in self.snlgroups.find( {'snlgroup_key': mpsnl.snlgroup_key}, sort=[("num_snl", DESCENDING)]): snlgroup = SNLGroup.from_dict(entry) match_found = self._add_if_belongs(snlgroup, mpsnl, testing_mode) if match_found: break if not match_found: # add a new SNLGroup snlgroup_id = self._get_next_snlgroup_id() snlgroup = SNLGroup(snlgroup_id, mpsnl) if not testing_mode: self.snlgroups.insert(snlgroup.to_dict) return snlgroup, not match_found
def build_groups(self, mpsnl, force_new=False, snlgroup_guess=None, testing_mode=False): # testing mode is used to see if something already exists in DB w/o adding it to the db match_found = False if not force_new: if snlgroup_guess: sgp = self.snlgroups.find_one({'snlgroup_id': snlgroup_guess}) snlgroup = SNLGroup.from_dict(sgp) match_found, spec_group = self._add_if_belongs(snlgroup, mpsnl, testing_mode) if not match_found: # look at all potential matches for entry in self.snlgroups.find({'snlgroup_key': mpsnl.snlgroup_key}, sort=[("num_snl", DESCENDING)]): snlgroup = SNLGroup.from_dict(entry) match_found, spec_group = self._add_if_belongs(snlgroup, mpsnl, testing_mode) if match_found: break if not match_found: # add a new SNLGroup snlgroup_id = self._get_next_snlgroup_id() snlgroup = SNLGroup(snlgroup_id, mpsnl) spec_group=None if snlgroup.species_groups: spec_group = snlgroup.species_groups.keys()[0] if not testing_mode: self.snlgroups.insert(snlgroup.to_dict) return snlgroup, not match_found, spec_group
def switch_canonical_snl(self, snlgroup_id, canonical_mpsnl): sgp = self.snlgroups.find_one({'snlgroup_id': snlgroup_id}) snlgroup = SNLGroup.from_dict(sgp) all_snl_ids = [sid for sid in snlgroup.all_snl_ids] if canonical_mpsnl.snl_id not in all_snl_ids: raise ValueError('Canonical SNL must already be in snlgroup to switch!') new_group = SNLGroup(snlgroup_id, canonical_mpsnl, all_snl_ids) self.snlgroups.update({'snlgroup_id': snlgroup_id}, new_group.as_dict())
def switch_canonical_snl(self, snlgroup_id, canonical_mpsnl): sgp = self.snlgroups.find_one({'snlgroup_id': snlgroup_id}) snlgroup = SNLGroup.from_dict(sgp) all_snl_ids = [sid for sid in snlgroup.all_snl_ids] if canonical_mpsnl.snl_id not in all_snl_ids: raise ValueError( 'Canonical SNL must already be in snlgroup to switch!') new_group = SNLGroup(snlgroup_id, canonical_mpsnl, all_snl_ids) self.snlgroups.update({'snlgroup_id': snlgroup_id}, new_group.to_dict)
def process_item(self, item, index): nrow, ncol = index/self._ncols, index%self._ncols snlgroups = {} # keep {snlgroup_id: SNLGroup} to avoid dupe queries if isinstance(item, dict) and 'snlgroup_ids' in item: for gid in item['snlgroup_ids']: try: snlgrp_dict = self._snlgroups.collection.find_one({ "snlgroup_id": gid }) snlgroups[gid] = SNLGroup.from_dict(snlgrp_dict) except: exc_type, exc_value, exc_traceback = sys.exc_info() _log.info('%r %r', exc_type, exc_value) self._increase_counter(nrow, ncol, {categories[self.checker_name]: [str(gid)]}) return nrow, ncol, snlgroups
def process_item(self, item, index): nrow, ncol = index / self._ncols, index % self._ncols snlgroups = {} # keep {snlgroup_id: SNLGroup} to avoid dupe queries if isinstance(item, dict) and 'snlgroup_ids' in item: for gid in item['snlgroup_ids']: try: snlgrp_dict = self._snlgroups.collection.find_one( {"snlgroup_id": gid}) snlgroups[gid] = SNLGroup.from_dict(snlgrp_dict) except: exc_type, exc_value, exc_traceback = sys.exc_info() _log.info('%r %r', exc_type, exc_value) self._increase_counter( nrow, ncol, {categories[self.checker_name]: [str(gid)]}) return nrow, ncol, snlgroups
def build_groups(self, mpsnl, testing_mode=False): # testing mode is used to see if something already exists in DB w/o adding it to the db add_new = True for entry in self.snlgroups.find({'snlgroup_key': mpsnl.snlgroup_key}, sort=[("num_snl", DESCENDING)]): snlgroup = SNLGroup.from_dict(entry) if snlgroup.add_if_belongs(mpsnl): add_new = False print 'MATCH FOUND, grouping (snl_id, snlgroup): {}'.format( (mpsnl.snl_id, snlgroup.snlgroup_id)) if not testing_mode: self.snlgroups.update({'snlgroup_id': snlgroup.snlgroup_id}, snlgroup.to_dict) break if add_new: # add a new SNLGroup snlgroup_id = self._get_next_snlgroup_id() snlgroup = SNLGroup(snlgroup_id, mpsnl) if not testing_mode: self.snlgroups.insert(snlgroup.to_dict) return snlgroup, add_new
def analyze(args): """analyze data at any point for a copy of the streaming figure""" # NOTE: make copy online first with suffix _%Y-%m-%d and note figure id fig = py.get_figure(creds['username'], args.fig_id) if args.t: if args.fig_id == 42: label_entries = filter( None, '<br>'.join(fig['data'][2]['text']).split('<br>')) pairs = map(make_tuple, label_entries) grps = set(chain.from_iterable(pairs)) snlgrp_cursor = sma.snlgroups.aggregate([{ '$match': { 'snlgroup_id': { '$in': list(grps) }, 'canonical_snl.about.projects': { '$ne': 'CederDahn Challenge' } } }, { '$project': { 'snlgroup_id': 1, 'canonical_snl.snlgroup_key': 1, '_id': 0 } }], cursor={}) snlgroup_keys = {} for d in snlgrp_cursor: snlgroup_keys[ d['snlgroup_id']] = d['canonical_snl']['snlgroup_key'] print snlgroup_keys[40890] sma2 = SNLMongoAdapter.from_file( os.path.join(os.environ['DB_LOC'], 'materials_db.yaml')) materials_cursor = sma2.database.materials.aggregate([{ '$match': { 'snlgroup_id_final': { '$in': list(grps) }, 'snl_final.about.projects': { '$ne': 'CederDahn Challenge' } } }, { '$project': { 'snlgroup_id_final': 1, '_id': 0, 'task_id': 1, 'final_energy_per_atom': 1, 'band_gap.search_gap.band_gap': 1, 'volume': 1, 'nsites': 1 } }], cursor={}) snlgroup_data = {} for material in materials_cursor: snlgroup_id = material['snlgroup_id_final'] final_energy_per_atom = material['final_energy_per_atom'] band_gap = material['band_gap']['search_gap']['band_gap'] volume_per_atom = material['volume'] / material['nsites'] snlgroup_data[snlgroup_id] = { 'final_energy_per_atom': final_energy_per_atom, 'band_gap': band_gap, 'task_id': material['task_id'], 'volume_per_atom': volume_per_atom } print snlgroup_data[40890] filestem = 'mpworks/check_snl/results/bad_snlgroups_2_' with open(filestem+'in_matdb.csv', 'wb') as f, \ open(filestem+'notin_matdb.csv', 'wb') as g: writer1, writer2 = csv.writer(f), csv.writer(g) header = [ 'category', 'composition', 'snlgroup_id 1', 'sg_num 1', 'task_id 1', 'snlgroup_id 2', 'sg_num 2', 'task_id 2', 'delta_energy', 'delta_bandgap', 'delta_volume_per_atom', 'rms_dist', 'scenario' ] writer1.writerow(header) writer2.writerow(header) for primary_id, secondary_id in pairs: if primary_id not in snlgroup_keys or \ secondary_id not in snlgroup_keys: continue composition, primary_sg_num = snlgroup_keys[ primary_id].split('--') secondary_sg_num = snlgroup_keys[secondary_id].split( '--')[1] category = 'same SGs' if primary_sg_num == secondary_sg_num else 'diff. SGs' if primary_id not in snlgroup_data or secondary_id not in snlgroup_data: delta_energy, delta_bandgap, delta_volume_per_atom = '', '', '' else: delta_energy = "{0:.3g}".format(abs( snlgroup_data[primary_id]['final_energy_per_atom'] - \ snlgroup_data[secondary_id]['final_energy_per_atom'] )) delta_bandgap = "{0:.3g}".format(abs( snlgroup_data[primary_id]['band_gap'] - \ snlgroup_data[secondary_id]['band_gap'] )) delta_volume_per_atom = "{0:.3g}".format(abs( snlgroup_data[primary_id]['volume_per_atom'] - \ snlgroup_data[secondary_id]['volume_per_atom'] )) scenario, rms_dist_str = '', '' if category == 'diff. SGs' and delta_energy and delta_bandgap: scenario = 'different' if ( float(delta_energy) > 0.01 or float(delta_bandgap) > 0.1) else 'similar' snlgrp1_dict = sma.snlgroups.find_one( {"snlgroup_id": primary_id}) snlgrp2_dict = sma.snlgroups.find_one( {"snlgroup_id": secondary_id}) snlgrp1 = SNLGroup.from_dict(snlgrp1_dict) snlgrp2 = SNLGroup.from_dict(snlgrp2_dict) primary_structure = snlgrp1.canonical_structure secondary_structure = snlgrp2.canonical_structure rms_dist = matcher.get_rms_dist( primary_structure, secondary_structure) if rms_dist is not None: rms_dist_str = "({0:.3g},{1:.3g})".format( *rms_dist) print rms_dist_str row = [ category, composition, primary_id, primary_sg_num, snlgroup_data[primary_id]['task_id'] \ if primary_id in snlgroup_data else '', secondary_id, secondary_sg_num, snlgroup_data[secondary_id]['task_id'] \ if secondary_id in snlgroup_data else '', delta_energy, delta_bandgap, delta_volume_per_atom, rms_dist_str, scenario ] if delta_energy and delta_bandgap: writer1.writerow(row) else: writer2.writerow(row) elif args.fig_id == 16: out_fig = Figure() badsnls_trace = Scatter(x=[], y=[], text=[], mode='markers', name='SG Changes') bisectrix = Scatter(x=[0, 230], y=[0, 230], mode='lines', name='bisectrix') print 'pulling bad snls from plotly ...' bad_snls = OrderedDict() for category, text in zip(fig['data'][2]['y'], fig['data'][2]['text']): for snl_id in map(int, text.split('<br>')): bad_snls[snl_id] = category with open('mpworks/check_snl/results/bad_snls.csv', 'wb') as f: print 'pulling bad snls from database ...' mpsnl_cursor = sma.snl.find({ 'snl_id': { '$in': bad_snls.keys() }, 'about.projects': { '$ne': 'CederDahn Challenge' } }) writer = csv.writer(f) writer.writerow([ 'snl_id', 'category', 'snlgroup_key', 'nsites', 'remarks', 'projects', 'authors' ]) print 'writing bad snls to file ...' for mpsnl_dict in mpsnl_cursor: mpsnl = MPStructureNL.from_dict(mpsnl_dict) row = [ mpsnl.snl_id, bad_snls[mpsnl.snl_id], mpsnl.snlgroup_key ] row += _get_snl_extra_info(mpsnl) writer.writerow(row) sg_num = mpsnl.snlgroup_key.split('--')[1] if (bad_snls[mpsnl.snl_id] == 'SG default' and sg_num != '-1') or \ bad_snls[mpsnl.snl_id] == 'SG change': mpsnl.structure.remove_oxidation_states() sf = SpacegroupAnalyzer(mpsnl.structure, symprec=0.1) badsnls_trace['x'].append(mpsnl.sg_num) badsnls_trace['y'].append(sf.get_spacegroup_number()) badsnls_trace['text'].append(mpsnl.snl_id) if bad_snls[mpsnl.snl_id] == 'SG default': print sg_num, sf.get_spacegroup_number() print 'plotting out-fig ...' out_fig['data'] = Data([bisectrix, badsnls_trace]) out_fig['layout'] = Layout( showlegend=False, hovermode='closest', title='Spacegroup Assignment Changes', xaxis=XAxis(showgrid=False, title='old SG number', range=[0, 230]), yaxis=YAxis(showgrid=False, title='new SG number', range=[0, 230]), ) filename = 'spacegroup_changes_' filename += datetime.datetime.now().strftime('%Y-%m-%d') py.plot(out_fig, filename=filename, auto_open=False) elif args.fig_id == 43: # SNLGroupMemberChecker matcher2 = StructureMatcher(ltol=0.2, stol=0.3, angle_tol=5, primitive_cell=False, scale=True, attempt_supercell=True, comparator=ElementComparator()) print 'pulling data from plotly ...' trace = Scatter(x=[], y=[], text=[], mode='markers', name='mismatches') bad_snls = OrderedDict() # snlgroup_id : [ mismatching snl_ids ] for category, text in zip(fig['data'][2]['y'], fig['data'][2]['text']): if category != 'mismatch': continue for entry in text.split('<br>'): fields = entry.split(':') snlgroup_id = int(fields[0].split(',')[0]) print snlgroup_id snlgrp_dict = sma.snlgroups.find_one( {'snlgroup_id': snlgroup_id}) snlgrp = SNLGroup.from_dict(snlgrp_dict) s1 = snlgrp.canonical_structure.get_primitive_structure() bad_snls[snlgroup_id] = [] for i, snl_id in enumerate(fields[1].split(',')): mpsnl_dict = sma.snl.find_one({'snl_id': int(snl_id)}) if 'CederDahn Challenge' in mpsnl_dict['about'][ 'projects']: print 'skip CederDahn: %s' % snl_id continue mpsnl = MPStructureNL.from_dict(mpsnl_dict) s2 = mpsnl.structure.get_primitive_structure() is_match = matcher2.fit(s1, s2) if is_match: continue bad_snls[snlgroup_id].append(snl_id) trace['x'].append(snlgroup_id) trace['y'].append(i + 1) trace['text'].append(snl_id) if len(bad_snls[snlgroup_id]) < 1: bad_snls.pop(snlgroup_id, None) with open('mpworks/check_snl/results/bad_snlgroups.csv', 'wb') as f: print 'pulling bad snlgroups from database ...' snlgroup_cursor = sma.snlgroups.find({ 'snlgroup_id': { '$in': bad_snls.keys() }, }) writer = csv.writer(f) writer.writerow( ['snlgroup_id', 'snlgroup_key', 'mismatching snl_ids']) print 'writing bad snlgroups to file ...' for snlgroup_dict in snlgroup_cursor: snlgroup = SNLGroup.from_dict(snlgroup_dict) row = [ snlgroup.snlgroup_id, snlgroup.canonical_snl.snlgroup_key, ' '.join(bad_snls[snlgroup.snlgroup_id]) ] writer.writerow(row) print 'plotting out-fig ...' out_fig = Figure() out_fig['data'] = Data([trace]) out_fig['layout'] = Layout( showlegend=False, hovermode='closest', title='Member Mismatches of SNLGroup Canonicals', xaxis=XAxis(showgrid=False, title='snlgroup_id', showexponent='none'), yaxis=YAxis(showgrid=False, title='# mismatching SNLs'), ) filename = 'groupmember_mismatches_' filename += datetime.datetime.now().strftime('%Y-%m-%d') py.plot(out_fig, filename=filename, auto_open=False) else: errors = Counter() bad_snls = OrderedDict() bad_snlgroups = OrderedDict() for i, d in enumerate(fig['data']): if not isinstance(d, Scatter): continue if not 'x' in d or not 'y' in d or not 'text' in d: continue start_id = int(d['name'].split(' - ')[0][:-1]) * 1000 marker_colors = d['marker']['color'] if i < 2 * num_snl_streams: # spacegroups errors += Counter(marker_colors) for idx, color in enumerate(marker_colors): snl_id = start_id + d['x'][idx] color_index = category_colors.index(color) category = categories[color_index] bad_snls[snl_id] = category else: # groupmembers for idx, color in enumerate(marker_colors): if color != category_colors[0]: continue snlgroup_id = start_id + d['x'][idx] mismatch_snl_id, canonical_snl_id = d['text'][idx].split( ' != ') bad_snlgroups[snlgroup_id] = int(mismatch_snl_id) print errors fig_data = fig['data'][-1] fig_data['x'] = [ errors[color] for color in fig_data['marker']['color'] ] filename = _get_filename() print filename #py.plot(fig, filename=filename) with open('mpworks/check_snl/results/bad_snls.csv', 'wb') as f: mpsnl_cursor = sma.snl.find({'snl_id': {'$in': bad_snls.keys()}}) writer = csv.writer(f) writer.writerow([ 'snl_id', 'category', 'snlgroup_key', 'nsites', 'remarks', 'projects', 'authors' ]) for mpsnl_dict in mpsnl_cursor: mpsnl = MPStructureNL.from_dict(mpsnl_dict) row = [ mpsnl.snl_id, bad_snls[mpsnl.snl_id], mpsnl.snlgroup_key ] row += _get_snl_extra_info(mpsnl) writer.writerow(row) with open('mpworks/check_snl/results/bad_snlgroups.csv', 'wb') as f: snlgrp_cursor = sma.snlgroups.find( {'snlgroup_id': { '$in': bad_snlgroups.keys() }}) first_mismatch_snls_cursor = sma.snl.find( {'snl_id': { '$in': bad_snlgroups.values() }}) first_mismatch_snl_info = OrderedDict() for mpsnl_dict in first_mismatch_snls_cursor: mpsnl = MPStructureNL.from_dict(mpsnl_dict) first_mismatch_snl_info[mpsnl.snl_id] = _get_snl_extra_info( mpsnl) writer = csv.writer(f) writer.writerow([ 'snlgroup_id', 'snlgroup_key', 'canonical_snl_id', 'first_mismatching_snl_id', 'nsites', 'remarks', 'projects', 'authors' ]) for snlgrp_dict in snlgrp_cursor: snlgrp = SNLGroup.from_dict(snlgrp_dict) first_mismatch_snl_id = bad_snlgroups[snlgrp.snlgroup_id] row = [ snlgrp.snlgroup_id, snlgrp.canonical_snl.snlgroup_key, snlgrp.canonical_snl.snl_id, first_mismatch_snl_id ] row += [ ' & '.join(pair) if pair[0] != pair[1] else pair[0] for pair in zip( _get_snl_extra_info(snlgrp.canonical_snl), first_mismatch_snl_info[int(first_mismatch_snl_id)]) ] writer.writerow(row)
def check_snls_in_snlgroups(args): """check whether SNLs in each SNLGroup still match resp. canonical SNL""" range_index = args.start / num_ids_per_stream idxs = [2 * (num_snl_streams + range_index)] idxs += [idxs[0] + 1] s = [py.Stream(stream_ids[i]) for i in idxs] for i in range(len(idxs)): s[i].open() end = num_snlgroups if args.end > num_snlgroups else args.end id_range = {"$gt": args.start, "$lte": end} snlgrp_cursor = sma.snlgroups.find({"snlgroup_id": id_range}) colors = [] num_good_ids = 0 for snlgrp_dict in snlgrp_cursor: start_time = time.clock() try: snlgrp = SNLGroup.from_dict(snlgrp_dict) except: exc_type, exc_value, exc_traceback = sys.exc_info() text = ' '.join([str(exc_type), str(exc_value)]) colors.append(category_colors[-1]) # Others data = dict(x=snlgrp_dict['snlgroup_id'] % num_ids_per_stream, y=range_index, text=text, marker=Marker(color=colors)) s[0].write(data) sleep(start_time) continue if len(snlgrp.all_snl_ids) <= 1: num_good_ids += 1 data = dict(x=[num_good_ids], y=[range_index]) s[1].write(data) sleep(start_time) continue exc_raised = False all_snls_good = True for snl_id in snlgrp.all_snl_ids: if snl_id == snlgrp.canonical_snl.snl_id: continue mpsnl_dict = sma.snl.find_one({"snl_id": snl_id}) try: mpsnl = MPStructureNL.from_dict(mpsnl_dict) is_match = matcher.fit(mpsnl.structure, snlgrp.canonical_structure) except: exc_type, exc_value, exc_traceback = sys.exc_info() exc_raised = True if exc_raised or not is_match: # Scatter (bad) if exc_raised: category = 2 if fnmatch(str(exc_type), '*pybtex*') else 3 text = ' '.join([str(exc_type), str(exc_value)]) else: category = 0 text = '%d != can:%d' % (mpsnl_dict['snl_id'], snlgrp.canonical_snl.snl_id) colors.append(category_colors[category]) data = dict(x=snlgrp_dict['snlgroup_id'] % num_ids_per_stream, y=range_index, text=text, marker=Marker(color=colors)) s[0].write(data) all_snls_good = False sleep(start_time) break if all_snls_good: # Bar (good) num_good_ids += 1 data = dict(x=[num_good_ids], y=[range_index]) s[1].write(data) sleep(start_time) for i in range(len(idxs)): s[i].close()
def analyze(args): """analyze data at any point for a copy of the streaming figure""" # NOTE: make copy online first with suffix _%Y-%m-%d and note figure id fig = py.get_figure(creds['username'], args.fig_id) if args.t: if args.fig_id == 42: label_entries = filter(None, '<br>'.join(fig['data'][2]['text']).split('<br>')) pairs = map(make_tuple, label_entries) grps = set(chain.from_iterable(pairs)) snlgrp_cursor = sma.snlgroups.aggregate([ { '$match': { 'snlgroup_id': { '$in': list(grps) }, 'canonical_snl.about.projects': {'$ne': 'CederDahn Challenge'} } }, { '$project': { 'snlgroup_id': 1, 'canonical_snl.snlgroup_key': 1, '_id': 0 } } ], cursor={}) snlgroup_keys = {} for d in snlgrp_cursor: snlgroup_keys[d['snlgroup_id']] = d['canonical_snl']['snlgroup_key'] print snlgroup_keys[40890] sma2 = SNLMongoAdapter.from_file( os.path.join(os.environ['DB_LOC'], 'materials_db.yaml') ) materials_cursor = sma2.database.materials.aggregate([ { '$match': { 'snlgroup_id_final': { '$in': list(grps) }, 'snl_final.about.projects': {'$ne': 'CederDahn Challenge'} } }, { '$project': { 'snlgroup_id_final': 1, '_id': 0, 'task_id': 1, 'final_energy_per_atom': 1, 'band_gap.search_gap.band_gap': 1, 'volume': 1, 'nsites': 1 }} ], cursor={}) snlgroup_data = {} for material in materials_cursor: snlgroup_id = material['snlgroup_id_final'] final_energy_per_atom = material['final_energy_per_atom'] band_gap = material['band_gap']['search_gap']['band_gap'] volume_per_atom = material['volume'] / material['nsites'] snlgroup_data[snlgroup_id] = { 'final_energy_per_atom': final_energy_per_atom, 'band_gap': band_gap, 'task_id': material['task_id'], 'volume_per_atom': volume_per_atom } print snlgroup_data[40890] filestem = 'mpworks/check_snl/results/bad_snlgroups_2_' with open(filestem+'in_matdb.csv', 'wb') as f, \ open(filestem+'notin_matdb.csv', 'wb') as g: writer1, writer2 = csv.writer(f), csv.writer(g) header = [ 'category', 'composition', 'snlgroup_id 1', 'sg_num 1', 'task_id 1', 'snlgroup_id 2', 'sg_num 2', 'task_id 2', 'delta_energy', 'delta_bandgap', 'delta_volume_per_atom', 'rms_dist', 'scenario' ] writer1.writerow(header) writer2.writerow(header) for primary_id, secondary_id in pairs: if primary_id not in snlgroup_keys or \ secondary_id not in snlgroup_keys: continue composition, primary_sg_num = snlgroup_keys[primary_id].split('--') secondary_sg_num = snlgroup_keys[secondary_id].split('--')[1] category = 'same SGs' if primary_sg_num == secondary_sg_num else 'diff. SGs' if primary_id not in snlgroup_data or secondary_id not in snlgroup_data: delta_energy, delta_bandgap, delta_volume_per_atom = '', '', '' else: delta_energy = "{0:.3g}".format(abs( snlgroup_data[primary_id]['final_energy_per_atom'] - \ snlgroup_data[secondary_id]['final_energy_per_atom'] )) delta_bandgap = "{0:.3g}".format(abs( snlgroup_data[primary_id]['band_gap'] - \ snlgroup_data[secondary_id]['band_gap'] )) delta_volume_per_atom = "{0:.3g}".format(abs( snlgroup_data[primary_id]['volume_per_atom'] - \ snlgroup_data[secondary_id]['volume_per_atom'] )) scenario, rms_dist_str = '', '' if category == 'diff. SGs' and delta_energy and delta_bandgap: scenario = 'different' if ( float(delta_energy) > 0.01 or float(delta_bandgap) > 0.1 ) else 'similar' snlgrp1_dict = sma.snlgroups.find_one({ "snlgroup_id": primary_id }) snlgrp2_dict = sma.snlgroups.find_one({ "snlgroup_id": secondary_id }) snlgrp1 = SNLGroup.from_dict(snlgrp1_dict) snlgrp2 = SNLGroup.from_dict(snlgrp2_dict) primary_structure = snlgrp1.canonical_structure secondary_structure = snlgrp2.canonical_structure rms_dist = matcher.get_rms_dist(primary_structure, secondary_structure) if rms_dist is not None: rms_dist_str = "({0:.3g},{1:.3g})".format(*rms_dist) print rms_dist_str row = [ category, composition, primary_id, primary_sg_num, snlgroup_data[primary_id]['task_id'] \ if primary_id in snlgroup_data else '', secondary_id, secondary_sg_num, snlgroup_data[secondary_id]['task_id'] \ if secondary_id in snlgroup_data else '', delta_energy, delta_bandgap, delta_volume_per_atom, rms_dist_str, scenario ] if delta_energy and delta_bandgap: writer1.writerow(row) else: writer2.writerow(row) elif args.fig_id == 16: out_fig = Figure() badsnls_trace = Scatter(x=[], y=[], text=[], mode='markers', name='SG Changes') bisectrix = Scatter(x=[0,230], y=[0,230], mode='lines', name='bisectrix') print 'pulling bad snls from plotly ...' bad_snls = OrderedDict() for category, text in zip(fig['data'][2]['y'], fig['data'][2]['text']): for snl_id in map(int, text.split('<br>')): bad_snls[snl_id] = category with open('mpworks/check_snl/results/bad_snls.csv', 'wb') as f: print 'pulling bad snls from database ...' mpsnl_cursor = sma.snl.find({ 'snl_id': { '$in': bad_snls.keys() }, 'about.projects': {'$ne': 'CederDahn Challenge'} }) writer = csv.writer(f) writer.writerow([ 'snl_id', 'category', 'snlgroup_key', 'nsites', 'remarks', 'projects', 'authors' ]) print 'writing bad snls to file ...' for mpsnl_dict in mpsnl_cursor: mpsnl = MPStructureNL.from_dict(mpsnl_dict) row = [ mpsnl.snl_id, bad_snls[mpsnl.snl_id], mpsnl.snlgroup_key ] row += _get_snl_extra_info(mpsnl) writer.writerow(row) sg_num = mpsnl.snlgroup_key.split('--')[1] if (bad_snls[mpsnl.snl_id] == 'SG default' and sg_num != '-1') or \ bad_snls[mpsnl.snl_id] == 'SG change': mpsnl.structure.remove_oxidation_states() sf = SpacegroupAnalyzer(mpsnl.structure, symprec=0.1) badsnls_trace['x'].append(mpsnl.sg_num) badsnls_trace['y'].append(sf.get_spacegroup_number()) badsnls_trace['text'].append(mpsnl.snl_id) if bad_snls[mpsnl.snl_id] == 'SG default': print sg_num, sf.get_spacegroup_number() print 'plotting out-fig ...' out_fig['data'] = Data([bisectrix, badsnls_trace]) out_fig['layout'] = Layout( showlegend=False, hovermode='closest', title='Spacegroup Assignment Changes', xaxis=XAxis(showgrid=False, title='old SG number', range=[0,230]), yaxis=YAxis(showgrid=False, title='new SG number', range=[0,230]), ) filename = 'spacegroup_changes_' filename += datetime.datetime.now().strftime('%Y-%m-%d') py.plot(out_fig, filename=filename, auto_open=False) elif args.fig_id == 43: # SNLGroupMemberChecker matcher2 = StructureMatcher( ltol=0.2, stol=0.3, angle_tol=5, primitive_cell=False, scale=True, attempt_supercell=True, comparator=ElementComparator() ) print 'pulling data from plotly ...' trace = Scatter(x=[], y=[], text=[], mode='markers', name='mismatches') bad_snls = OrderedDict() # snlgroup_id : [ mismatching snl_ids ] for category, text in zip(fig['data'][2]['y'], fig['data'][2]['text']): if category != 'mismatch': continue for entry in text.split('<br>'): fields = entry.split(':') snlgroup_id = int(fields[0].split(',')[0]) print snlgroup_id snlgrp_dict = sma.snlgroups.find_one({ 'snlgroup_id': snlgroup_id }) snlgrp = SNLGroup.from_dict(snlgrp_dict) s1 = snlgrp.canonical_structure.get_primitive_structure() bad_snls[snlgroup_id] = [] for i, snl_id in enumerate(fields[1].split(',')): mpsnl_dict = sma.snl.find_one({ 'snl_id': int(snl_id) }) if 'CederDahn Challenge' in mpsnl_dict['about']['projects']: print 'skip CederDahn: %s' % snl_id continue mpsnl = MPStructureNL.from_dict(mpsnl_dict) s2 = mpsnl.structure.get_primitive_structure() is_match = matcher2.fit(s1, s2) if is_match: continue bad_snls[snlgroup_id].append(snl_id) trace['x'].append(snlgroup_id) trace['y'].append(i+1) trace['text'].append(snl_id) if len(bad_snls[snlgroup_id]) < 1: bad_snls.pop(snlgroup_id, None) with open('mpworks/check_snl/results/bad_snlgroups.csv', 'wb') as f: print 'pulling bad snlgroups from database ...' snlgroup_cursor = sma.snlgroups.find({ 'snlgroup_id': { '$in': bad_snls.keys() }, }) writer = csv.writer(f) writer.writerow(['snlgroup_id', 'snlgroup_key', 'mismatching snl_ids']) print 'writing bad snlgroups to file ...' for snlgroup_dict in snlgroup_cursor: snlgroup = SNLGroup.from_dict(snlgroup_dict) row = [ snlgroup.snlgroup_id, snlgroup.canonical_snl.snlgroup_key, ' '.join(bad_snls[snlgroup.snlgroup_id]) ] writer.writerow(row) print 'plotting out-fig ...' out_fig = Figure() out_fig['data'] = Data([trace]) out_fig['layout'] = Layout( showlegend=False, hovermode='closest', title='Member Mismatches of SNLGroup Canonicals', xaxis=XAxis(showgrid=False, title='snlgroup_id', showexponent='none'), yaxis=YAxis(showgrid=False, title='# mismatching SNLs'), ) filename = 'groupmember_mismatches_' filename += datetime.datetime.now().strftime('%Y-%m-%d') py.plot(out_fig, filename=filename, auto_open=False) else: errors = Counter() bad_snls = OrderedDict() bad_snlgroups = OrderedDict() for i,d in enumerate(fig['data']): if not isinstance(d, Scatter): continue if not 'x' in d or not 'y' in d or not 'text' in d: continue start_id = int(d['name'].split(' - ')[0][:-1])*1000 marker_colors = d['marker']['color'] if i < 2*num_snl_streams: # spacegroups errors += Counter(marker_colors) for idx,color in enumerate(marker_colors): snl_id = start_id + d['x'][idx] color_index = category_colors.index(color) category = categories[color_index] bad_snls[snl_id] = category else: # groupmembers for idx,color in enumerate(marker_colors): if color != category_colors[0]: continue snlgroup_id = start_id + d['x'][idx] mismatch_snl_id, canonical_snl_id = d['text'][idx].split(' != ') bad_snlgroups[snlgroup_id] = int(mismatch_snl_id) print errors fig_data = fig['data'][-1] fig_data['x'] = [ errors[color] for color in fig_data['marker']['color'] ] filename = _get_filename() print filename #py.plot(fig, filename=filename) with open('mpworks/check_snl/results/bad_snls.csv', 'wb') as f: mpsnl_cursor = sma.snl.find({ 'snl_id': { '$in': bad_snls.keys() } }) writer = csv.writer(f) writer.writerow([ 'snl_id', 'category', 'snlgroup_key', 'nsites', 'remarks', 'projects', 'authors' ]) for mpsnl_dict in mpsnl_cursor: mpsnl = MPStructureNL.from_dict(mpsnl_dict) row = [ mpsnl.snl_id, bad_snls[mpsnl.snl_id], mpsnl.snlgroup_key ] row += _get_snl_extra_info(mpsnl) writer.writerow(row) with open('mpworks/check_snl/results/bad_snlgroups.csv', 'wb') as f: snlgrp_cursor = sma.snlgroups.find({ 'snlgroup_id': { '$in': bad_snlgroups.keys() } }) first_mismatch_snls_cursor = sma.snl.find({ 'snl_id': { '$in': bad_snlgroups.values() } }) first_mismatch_snl_info = OrderedDict() for mpsnl_dict in first_mismatch_snls_cursor: mpsnl = MPStructureNL.from_dict(mpsnl_dict) first_mismatch_snl_info[mpsnl.snl_id] = _get_snl_extra_info(mpsnl) writer = csv.writer(f) writer.writerow([ 'snlgroup_id', 'snlgroup_key', 'canonical_snl_id', 'first_mismatching_snl_id', 'nsites', 'remarks', 'projects', 'authors' ]) for snlgrp_dict in snlgrp_cursor: snlgrp = SNLGroup.from_dict(snlgrp_dict) first_mismatch_snl_id = bad_snlgroups[snlgrp.snlgroup_id] row = [ snlgrp.snlgroup_id, snlgrp.canonical_snl.snlgroup_key, snlgrp.canonical_snl.snl_id, first_mismatch_snl_id ] row += [ ' & '.join(pair) if pair[0] != pair[1] else pair[0] for pair in zip( _get_snl_extra_info(snlgrp.canonical_snl), first_mismatch_snl_info[int(first_mismatch_snl_id)] ) ] writer.writerow(row)
def check_snls_in_snlgroups(args): """check whether SNLs in each SNLGroup still match resp. canonical SNL""" range_index = args.start / num_ids_per_stream idxs = [2*(num_snl_streams+range_index)] idxs += [idxs[0]+1] s = [py.Stream(stream_ids[i]) for i in idxs] for i in range(len(idxs)): s[i].open() end = num_snlgroups if args.end > num_snlgroups else args.end id_range = {"$gt": args.start, "$lte": end} snlgrp_cursor = sma.snlgroups.find({ "snlgroup_id": id_range}) colors = [] num_good_ids = 0 for snlgrp_dict in snlgrp_cursor: start_time = time.clock() try: snlgrp = SNLGroup.from_dict(snlgrp_dict) except: exc_type, exc_value, exc_traceback = sys.exc_info() text = ' '.join([str(exc_type), str(exc_value)]) colors.append(category_colors[-1]) # Others data = dict( x=snlgrp_dict['snlgroup_id']%num_ids_per_stream, y=range_index, text=text, marker=Marker(color=colors) ) s[0].write(data) sleep(start_time) continue if len(snlgrp.all_snl_ids) <= 1: num_good_ids += 1 data = dict(x=[num_good_ids], y=[range_index]) s[1].write(data) sleep(start_time) continue exc_raised = False all_snls_good = True for snl_id in snlgrp.all_snl_ids: if snl_id == snlgrp.canonical_snl.snl_id: continue mpsnl_dict = sma.snl.find_one({ "snl_id": snl_id }) try: mpsnl = MPStructureNL.from_dict(mpsnl_dict) is_match = matcher.fit(mpsnl.structure, snlgrp.canonical_structure) except: exc_type, exc_value, exc_traceback = sys.exc_info() exc_raised = True if exc_raised or not is_match: # Scatter (bad) if exc_raised: category = 2 if fnmatch(str(exc_type), '*pybtex*') else 3 text = ' '.join([str(exc_type), str(exc_value)]) else: category = 0 text = '%d != can:%d' % (mpsnl_dict['snl_id'], snlgrp.canonical_snl.snl_id) colors.append(category_colors[category]) data = dict( x=snlgrp_dict['snlgroup_id']%num_ids_per_stream, y=range_index, text=text, marker=Marker(color=colors) ) s[0].write(data) all_snls_good = False sleep(start_time) break if all_snls_good: # Bar (good) num_good_ids += 1 data = dict(x=[num_good_ids], y=[range_index]) s[1].write(data) sleep(start_time) for i in range(len(idxs)): s[i].close()