def ingest_packed_state(p_packed, **optimization_inputs): r'''Read a given packed state into optimization_inputs SYNOPSIS # A simple gradient check model = mrcal.cameramodel('xxx.cameramodel') optimization_inputs = model.optimization_inputs() p0,x0,J = mrcal.optimizer_callback(no_factorization = True, **optimization_inputs)[:3] dp = np.random.randn(len(p0)) * 1e-9 mrcal.ingest_packed_state(p0 + dp, **optimization_inputs) x1 = mrcal.optimizer_callback(no_factorization = True, no_jacobian = True, **optimization_inputs)[1] dx_observed = x1 - x0 dx_predicted = nps.inner(J, dp_packed) This is the converse of mrcal.optimizer_callback(). One thing mrcal.optimizer_callback() does is to convert the expanded (intrinsics, extrinsics, ...) arrays into a 1-dimensional scaled optimization vector p_packed. mrcal.ingest_packed_state() allows updates to p_packed to be absorbed back into the (intrinsics, extrinsics, ...) arrays for further evaluation with mrcal.optimizer_callback() and others. ARGUMENTS - p_packed: a numpy array of shape (Nstate,) containing the input packed state - **optimization_inputs: a dict() of arguments passable to mrcal.optimize() and mrcal.optimizer_callback(). The arrays in this dict are updated RETURNED VALUE None ''' intrinsics = optimization_inputs.get("intrinsics") extrinsics = optimization_inputs.get("extrinsics_rt_fromref") frames = optimization_inputs.get("frames_rt_toref") points = optimization_inputs.get("points") calobject_warp = optimization_inputs.get("calobject_warp") Npoints_fixed = optimization_inputs.get('Npoints_fixed', 0) Nvars_intrinsics = mrcal.num_states_intrinsics(**optimization_inputs) Nvars_extrinsics = mrcal.num_states_extrinsics(**optimization_inputs) Nvars_frames = mrcal.num_states_frames(**optimization_inputs) Nvars_points = mrcal.num_states_points(**optimization_inputs) Nvars_calobject_warp = mrcal.num_states_calobject_warp( **optimization_inputs) Nvars_expected = \ Nvars_intrinsics + \ Nvars_extrinsics + \ Nvars_frames + \ Nvars_points + \ Nvars_calobject_warp # Defaults MUST match those in OPTIMIZER_ARGUMENTS_OPTIONAL in # mrcal-pywrap.c. Or better yet, this whole function should # come from the C code instead of being reimplemented here in Python do_optimize_intrinsics_core = optimization_inputs.get( 'do_optimize_intrinsics_core', True) do_optimize_intrinsics_distortions = optimization_inputs.get( 'do_optimize_intrinsics_distortions', True) do_optimize_extrinsics = optimization_inputs.get('do_optimize_extrinsics', True) do_optimize_frames = optimization_inputs.get('do_optimize_frames', True) do_optimize_calobject_warp = optimization_inputs.get( 'do_optimize_calobject_warp', True) if p_packed.ravel().size != Nvars_expected: raise Exception( f"Mismatched array size: p_packed.size={p_packed.ravel().size} while the optimization problem expects {Nvars_expected}" ) p = p_packed.copy() mrcal.unpack_state(p, **optimization_inputs) if do_optimize_intrinsics_core or \ do_optimize_intrinsics_distortions: ivar0 = mrcal.state_index_intrinsics(0, **optimization_inputs) if ivar0 is not None: iunpacked0, iunpacked1 = None, None # everything by default lensmodel = optimization_inputs['lensmodel'] has_core = mrcal.lensmodel_metadata_and_config( lensmodel)['has_core'] Ncore = 4 if has_core else 0 Ndistortions = mrcal.lensmodel_num_params(lensmodel) - Ncore if not do_optimize_intrinsics_core: iunpacked0 = Ncore if not do_optimize_intrinsics_distortions: iunpacked1 = -Ndistortions intrinsics[:, iunpacked0:iunpacked1].ravel()[:] = \ p[ ivar0:Nvars_intrinsics ] if do_optimize_extrinsics: ivar0 = mrcal.state_index_extrinsics(0, **optimization_inputs) if ivar0 is not None: extrinsics.ravel()[:] = p[ivar0:ivar0 + Nvars_extrinsics] if do_optimize_frames: ivar0 = mrcal.state_index_frames(0, **optimization_inputs) if ivar0 is not None: frames.ravel()[:] = p[ivar0:ivar0 + Nvars_frames] if do_optimize_frames: ivar0 = mrcal.state_index_points(0, **optimization_inputs) if ivar0 is not None: points.ravel()[:-Npoints_fixed * 3] = p[ivar0:ivar0 + Nvars_points] if do_optimize_calobject_warp: ivar0 = mrcal.state_index_calobject_warp(**optimization_inputs) if ivar0 is not None: calobject_warp.ravel()[:] = p[ivar0:ivar0 + Nvars_calobject_warp]
optimization_inputs['do_optimize_intrinsics_core'] = True optimization_inputs['do_optimize_intrinsics_distortions'] = False optimization_inputs['do_optimize_extrinsics'] = True optimization_inputs['do_optimize_frames'] = True optimization_inputs['do_optimize_calobject_warp'] = False mrcal.optimize(**optimization_inputs, do_apply_outlier_rejection=True) testutils.confirm_equal(mrcal.num_states_intrinsics(**optimization_inputs), 4 * Ncameras, "num_states_intrinsics()") testutils.confirm_equal(mrcal.num_states_extrinsics(**optimization_inputs), 6 * (Ncameras - 1), "num_states_extrinsics()") testutils.confirm_equal(mrcal.num_states_frames(**optimization_inputs), 6 * Nframes, "num_states_frames()") testutils.confirm_equal(mrcal.num_states_points(**optimization_inputs), 0, "num_states_points()") testutils.confirm_equal(mrcal.num_states_calobject_warp(**optimization_inputs), 0, "num_states_calobject_warp()") testutils.confirm_equal( mrcal.num_measurements_boards(**optimization_inputs), object_width_n * object_height_n * 2 * Nframes * Ncameras, "num_measurements_boards()") testutils.confirm_equal(mrcal.num_measurements_points(**optimization_inputs), 0, "num_measurements_points()") testutils.confirm_equal( mrcal.num_measurements_regularization(**optimization_inputs), Ncameras * 2, "num_measurements_regularization()") optimization_inputs['do_optimize_intrinsics_core'] = True optimization_inputs['do_optimize_intrinsics_distortions'] = True optimization_inputs['do_optimize_extrinsics'] = True