def load_image_gt(dataset, config, image_id, augment=False, augmentation=None,
                  use_mini_mask=False):

    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    original_shape = image.shape
    image, window, scale, padding, crop = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        min_scale=config.IMAGE_MIN_SCALE,
        max_dim=config.IMAGE_MAX_DIM,
        mode=config.IMAGE_RESIZE_MODE)
    mask = utils.resize_mask(mask, scale, padding, crop)

    if augment:
        logging.warning("'augment' is deprecated. Use 'augmentation' instead.")
        if random.randint(0, 1):
            image = np.fliplr(image)
            mask = np.fliplr(mask)

    if augmentation:
        import imgaug
        MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes",
                           "Fliplr", "Flipud", "CropAndPad",
                           "Affine", "PiecewiseAffine"]

        def hook(images, augmenter, parents, default):
            """Determines which augmenters to apply to masks."""
            return augmenter.__class__.__name__ in MASK_AUGMENTERS

        image_shape = image.shape
        mask_shape = mask.shape
        det = augmentation.to_deterministic()
        image = det.augment_image(image)
        mask = det.augment_image(mask.astype(np.uint8),
                                 hooks=imgaug.HooksImages(activator=hook))
        assert image.shape == image_shape, "Augmentation shouldn't change image size"
        assert mask.shape == mask_shape, "Augmentation shouldn't change mask size"
        mask = mask.astype(np.bool)

    _idx = np.sum(mask, axis=(0, 1)) > 0
    mask = mask[:, :, _idx]
    class_ids = class_ids[_idx]
    bbox = utils.extract_bboxes(mask)

    active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
    source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
    active_class_ids[source_class_ids] = 1
    if use_mini_mask:
        mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)

    image_meta = compose_image_meta(image_id, original_shape, image.shape,
                                    window, scale, active_class_ids)
    return image, image_meta, class_ids, bbox, mask
Exemple #2
0
def load_image_gt(dataset,
                  config,
                  image_id,
                  augment=False,
                  use_mini_mask=False):
    """
    Load and return ground truth data for an image (image, mask, bounding boxes).

    Inputs:
    --------    
    augment:            If true, apply random image augmentation. Currently, only
                        horizontal flipping is offered.
                        
    use_mini_mask:      If False, returns full-size masks that are the same height
                        and width as the original image. These can be big, for example
                        1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
                        224x224 and are generated by extracting the bounding box of the
                        object and resizing it to MINI_MASK_SHAPE.

    Returns:
    ---------
    image:              [height, width, 3]
    shape:              the original shape of the image before resizing and cropping.
    class_ids:          [instance_count] Integer class IDs
    bbox:               [instance_count, (y1, x1, y2, x2)]
    mask:               [height, width, instance_count]. The height and width are those
                        of the image unless use_mini_mask is True, in which case they are
                        defined in MINI_MASK_SHAPE.
    """

    # Load image and mask
    # print('=========================')
    # print(' Load Image GT: ', image_id)
    # print('=========================')
    image = dataset.load_image(image_id)

    mask, class_ids = dataset.load_mask(image_id)

    # print(mask.shape, class_ids.shape)
    # for  i in range( class_ids.shape[-1]) :
    # print( 'mask ',i, ' class_id :', class_ids[i], mask[:,:,i].shape)
    # print()
    # print(np.array2string(np.where(mask[:,:,i],1,0),max_line_width=134, separator = ''))

    shape = image.shape
    image, window, scale, padding = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        max_dim=config.IMAGE_MAX_DIM,
        padding=config.IMAGE_PADDING)
    mask = utils.resize_mask(mask, scale, padding)

    # print('after resize_mask shape is :',mask.shape)
    # Random horizontal flips.
    if augment:
        if random.randint(0, 1):
            image = np.fliplr(image)
            mask = np.fliplr(mask)

    # Bounding boxes. Note that some boxes might be all zeros
    # if the corresponding mask got cropped out.
    # bbox: [num_instances, (y1, x1, y2, x2)]
    bbox = utils.extract_bboxes(mask)
    # print('boxes are: \n', bbox)

    ## Active classes
    # Different datasets have different classes, so track the
    # classes supported in the dataset of this image.
    active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
    source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]
                                                ["source"]]
    active_class_ids[source_class_ids] = 1

    # Resize masks to smaller size to reduce memory usage
    if use_mini_mask:
        mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)
        # print('after use_mini_mask  shape is :',mask.shape)
    # Image meta data
    image_meta = utils.compose_image_meta(image_id, shape, window,
                                          active_class_ids)

    return image, image_meta, class_ids, bbox, mask
def load_image_gt(dataset,
                  config,
                  image_id,
                  augment=False,
                  augmentation=None,
                  use_mini_mask=False):
    """Load and return ground truth data for an image (image, mask, bounding boxes).

    augment: (deprecated. Use augmentation instead). If true, apply random
        image augmentation. Currently, only horizontal flipping is offered.
    augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation.
        For example, passing imgaug.augmenters.Fliplr(0.5) flips images
        right/left 50% of the time.
    use_mini_mask: If False, returns full-size masks that are the same height
        and width as the original image. These can be big, for example
        1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
        224x224 and are generated by extracting the bounding box of the
        object and resizing it to MINI_MASK_SHAPE.

    Returns:
    image: [height, width, 3]
    shape: the original shape of the image before resizing and cropping.
    class_ids: [instance_count] Integer class IDs
    bbox: [instance_count, (y1, x1, y2, x2)]
    mask: [height, width, instance_count]. The height and width are those
        of the image unless use_mini_mask is True, in which case they are
        defined in MINI_MASK_SHAPE.
    """
    # Load image and mask
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    original_shape = image.shape
    image, window, scale, padding, crop = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        min_scale=config.IMAGE_MIN_SCALE,
        max_dim=config.IMAGE_MAX_DIM,
        mode=config.IMAGE_RESIZE_MODE)
    mask = utils.resize_mask(mask, scale, padding, crop)

    # Random horizontal flips.
    # TODO: will be removed in a future update in favor of augmentation
    if augment:
        logging.warning("'augment' is deprecated. Use 'augmentation' instead.")
        if random.randint(0, 1):
            image = np.fliplr(image)
            mask = np.fliplr(mask)

    # Augmentation
    # This requires the imgaug lib (https://github.com/aleju/imgaug)
    if augmentation:
        import imgaug

        # Augmenters that are safe to apply to masks
        # Some, such as Affine, have settings that make them unsafe, so always
        # test your augmentation on masks
        MASK_AUGMENTERS = [
            "Sequential", "SomeOf", "OneOf", "Sometimes", "Fliplr", "Flipud",
            "CropAndPad", "Affine", "PiecewiseAffine"
        ]

        def hook(images, augmenter, parents, default):
            """Determines which augmenters to apply to masks."""
            return augmenter.__class__.__name__ in MASK_AUGMENTERS

        # Store shapes before augmentation to compare
        image_shape = image.shape
        mask_shape = mask.shape
        # Make augmenters deterministic to apply similarly to images and masks
        det = augmentation.to_deterministic()
        image = det.augment_image(image)
        # Change mask to np.uint8 because imgaug doesn't support np.bool
        mask = det.augment_image(mask.astype(np.uint8),
                                 hooks=imgaug.HooksImages(activator=hook))
        # Verify that shapes didn't change
        assert image.shape == image_shape, "Augmentation shouldn't change image size"
        assert mask.shape == mask_shape, "Augmentation shouldn't change mask size"
        # Change mask back to bool
        mask = mask.astype(np.bool)

    # Note that some boxes might be all zeros if the corresponding mask got cropped out.
    # and here is to filter them out
    _idx = np.sum(mask, axis=(0, 1)) > 0
    mask = mask[:, :, _idx]
    class_ids = class_ids[_idx]
    # Bounding boxes. Note that some boxes might be all zeros
    # if the corresponding mask got cropped out.
    # bbox: [num_instances, (y1, x1, y2, x2)]
    bbox = utils.extract_bboxes(mask)

    # Active classes
    # Different datasets have different classes, so track the
    # classes supported in the dataset of this image.
    active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
    source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]
                                                ["source"]]
    active_class_ids[source_class_ids] = 1

    # Resize masks to smaller size to reduce memory usage
    if use_mini_mask:
        mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)

    # Image meta data
    image_meta = compose_image_meta(image_id, original_shape, image.shape,
                                    window, scale, active_class_ids)

    return image, image_meta, class_ids, bbox, mask
Exemple #4
0
def cleanImage(datasetPath: str,
               imageName: str,
               cleaningClasses: str,
               excludeClasses=None,
               imageFormat="jpg",
               cleanMasks=False,
               minAreaThreshold=300,
               config: Config = None):
    """
    Creating the full_images directory and cleaning the base image by removing non-cleaning-class areas
    :param excludeClasses:
    :param datasetPath: the dataset that have been wrapped
    :param imageName: the image name
    :param cleaningClasses: the class to use to clean the image
    :param cleanMasks: if true, will clean masks based on the cleaning-class-mask
    :param imageFormat: the image format to use to save the image
    :param minAreaThreshold: remove mask if its area is smaller than this threshold
    :param config: config object
    :return: None
    """
    assert cleaningClasses is not None and cleaningClasses != "", "Cleaning class is required."
    if type(cleaningClasses) is str:
        cleaningClasses = [cleaningClasses]
    if type(excludeClasses) is str:
        excludeClasses = [excludeClasses]

    # Getting the base image
    path = os.path.join(datasetPath, imageName, '{folder}',
                        f"{imageName}.{imageFormat}")
    imagePath = path.format(folder='images')
    fullImagePath = path.format(folder='full_images')
    image = cv2.imread(imagePath)

    # Fusing all the cleaning-class masks and then cleaning the image and if needed the masks
    cleaningClassMasks = gatherClassesMasks(datasetPath, imageName,
                                            image.shape, cleaningClasses)
    if excludeClasses is None:
        excludedClassMasks = None
    else:
        excludedClassMasks = gatherClassesMasks(datasetPath, imageName,
                                                image.shape, excludeClasses)

    if cleaningClassMasks is not None or excludedClassMasks is not None:
        if cleaningClassMasks is None:
            cleaningClassMasks = np.ones_like(image)[..., 0] * 255
        if excludedClassMasks is not None:
            excludedClassMasks = cv2.bitwise_not(excludedClassMasks)
            cleaningClassMasks = cv2.bitwise_and(cleaningClassMasks,
                                                 excludedClassMasks)
        # Copying the full image into the correct directory
        os.makedirs(os.path.dirname(fullImagePath), exist_ok=True)
        shutil.copy2(imagePath, fullImagePath)

        # Cleaning the image and saving it
        image = cv2.bitwise_and(
            image, np.repeat(cleaningClassMasks[:, :, np.newaxis], 3, axis=2))
        cv2.imwrite(imagePath, image, CV2_IMWRITE_PARAM)

        # Cleaning masks so that they cannot exist elsewhere
        if cleanMasks:
            folderToRemove = []
            for folder in os.listdir(os.path.join(datasetPath, imageName)):
                folderPath = os.path.join(datasetPath, imageName, folder)
                # Checking only for the other classes folder
                skipClasses = ["images", "full_images"]
                skipClasses.extend(cleaningClasses)
                skipClasses.extend(excludeClasses)
                if os.path.isdir(folderPath) and folder not in skipClasses:
                    # For each mask of the folder
                    for maskImageFileName in os.listdir(folderPath):
                        maskImagePath = os.path.join(folderPath,
                                                     maskImageFileName)
                        mask = loadSameResImage(maskImagePath, image.shape)
                        areaBefore = getBWCount(mask)[1]

                        # If mask is not empty
                        if areaBefore > 0:
                            # Cleaning it with the cleaning-class masks
                            mask = cv2.bitwise_and(mask, cleaningClassMasks)
                            areaAfter = getBWCount(mask)[1]
                        else:
                            areaAfter = areaBefore

                        # If mask was empty or too small after cleaning, we remove it
                        if areaBefore == 0 or areaAfter < minAreaThreshold:
                            os.remove(maskImagePath)
                        elif areaBefore != areaAfter:
                            # If mask has is different after cleaning, we replace the original one
                            try:
                                try:
                                    idMask = int(
                                        maskImageFileName.split('.')[0].split(
                                            '_')[1])
                                except ValueError:
                                    # If we could not retrieve the original mask ID, give it a unique one
                                    idMask = int(time())

                                # If mini-mask are enabled, we minimize it before saving it
                                bbox_coordinates = ""
                                if config is not None and config.is_using_mini_mask(
                                ):
                                    bbox = extract_bboxes(mask)
                                    mask = minimize_mask(
                                        bbox, mask,
                                        config.get_mini_mask_shape())
                                    mask = mask.astype(np.uint8) * 255
                                    y1, x1, y2, x2 = bbox
                                    bbox_coordinates = f"_{y1}_{x1}_{y2}_{x2}"

                                # Saving cleaned mask
                                outputName = f"{imageName}_{idMask:03d}{bbox_coordinates}.{imageFormat}"
                                cv2.imwrite(
                                    os.path.join(folderPath, outputName), mask,
                                    CV2_IMWRITE_PARAM)
                                if outputName != maskImageFileName:  # Remove former mask if not the same name
                                    os.remove(maskImagePath)
                            except Exception:
                                print(f"Error on {maskImagePath} update")

                    if len(os.listdir(folderPath)) == 0:
                        folderToRemove.append(folderPath)
            for folderPath in folderToRemove:
                shutil.rmtree(folderPath, ignore_errors=True)
            pass
Exemple #5
0
def createMask(imgName: str,
               imgShape,
               idMask: int,
               ptsMask,
               datasetName: str = 'dataset_train',
               maskClass: str = 'masks',
               imageFormat="jpg",
               config: Config = None):
    """
    Create the mask image based on its polygon points
    :param imgName: name w/o extension of the base image
    :param imgShape: shape of the image
    :param idMask: the ID of the mask, a number not already used for that image
    :param ptsMask: array of [x, y] coordinates which are all the polygon points representing the mask
    :param datasetName: name of the output dataset
    :param maskClass: name of the associated class of the current mask
    :param imageFormat: output format of the masks' images
    :param config: config object
    :return: None
    """
    # https://www.programcreek.com/python/example/89415/cv2.fillPoly
    # Formatting coordinates matrix to get int
    ptsMask = np.double(ptsMask)
    ptsMask = np.matrix.round(ptsMask)
    ptsMask = np.int32(ptsMask)

    bbox_coordinates = ""
    if config is not None and config.is_using_mini_mask():
        bbox = get_bbox_from_points(ptsMask)
        if get_bboxes_intersection(bbox, [0, 0, *imgShape[:2]]) <= 0:
            return
        kept_bbox = [0, 0, 0, 0]
        for i in range(4):
            kept_bbox[i] = min(max(0, bbox[i]), imgShape[i % 2])
        y1, x1, y2, x2 = kept_bbox
        bbox_coordinates = f"_{y1}_{x1}_{y2}_{x2}"

        shiftedBbox = shift_bbox(bbox)
        shift = bbox[:2]
        mask = np.uint8(np.zeros((shiftedBbox[2], shiftedBbox[3])))
        cv2.fillPoly(mask, [ptsMask - shift[::-1]], 255)

        shifted_kept_bbox = shift_bbox(kept_bbox, customShift=shift)
        y1, x1, y2, x2 = shifted_kept_bbox
        mask = mask[y1:y2, x1:x2]

        # Creating black matrix with same size than original image and then drawing the mask
        mask = minimize_mask(shiftedBbox, mask, config.get_mini_mask_shape())
        mask = mask.astype(np.uint8) * 255
    else:
        # Creating black matrix with same size than original image and then drawing the mask
        mask = np.uint8(np.zeros((imgShape[0], imgShape[1])))
        cv2.fillPoly(mask, [ptsMask], 255)

    # Saving result image
    maskClass = maskClass.lower().strip(' ').replace(" ", "_")
    output_directory = os.path.join(datasetName, imgName, maskClass)
    if not os.path.exists(output_directory):
        os.makedirs(output_directory)
    output_name = f"{imgName}_{idMask:03d}{bbox_coordinates}.{imageFormat}"
    cv2.imwrite(os.path.join(output_directory, output_name), mask,
                CV2_IMWRITE_PARAM)
Exemple #6
0
    # Run object detection
    results = model.detect([image], verbose=1)

    ax = get_ax(1)
    r = results[0]

    visualize.display_instances(image,
                                r['rois'],
                                r['masks'],
                                r['class_ids'],
                                dataset.class_names,
                                r['scores'],
                                ax=ax,
                                title="Predictions")

    mini_new_mask = utils.minimize_mask(r['rois'], r['masks'],
                                        config.MINI_MASK_SHAPE)

    #display_images([mini_new_mask[:,:,i] for i in range(min(mini_new_mask.shape[-1], 14))])

    print(len(gt_bbox))
    # saving test data information
    #SAV_DIR = os.path.join(ROOT_DIR, 'samples/pig/crop_mask_data/pig_data_test_'+str(sav_dir_str_index+i+1))
    # saving the training data informations
    SAV_DIR = os.path.join(
        ROOT_DIR,
        'crop_mask_data/pig_data_train_' + str(sav_dir_str_index + i + 1))
    # saving the actual output of mask rcnn informations
    #SAV_DIR = os.path.join(ROOT_DIR, 'samples/pig/crop_mask_data/pig_data_act_out_'+str(sav_dir_str_index+i+1))
    os.mkdir(SAV_DIR)
    print(SAV_DIR)
    for index in range(len(gt_bbox)):