Exemple #1
0
def test_nystroem_approximation():
    # some basic tests
    rnd = np.random.RandomState(0)
    X = rnd.uniform(size=(10, 4))

    # With n_components = n_samples this is exact
    X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X)
    K = rbf_kernel(X)
    assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)

    trans = Nystroem(n_components=2, random_state=rnd)
    X_transformed = trans.fit(X).transform(X)
    assert X_transformed.shape == (X.shape[0], 2)

    # test callable kernel
    def linear_kernel(X, Y):
        return np.dot(X, Y.T)

    trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd)
    X_transformed = trans.fit(X).transform(X)
    assert X_transformed.shape == (X.shape[0], 2)

    # test that available kernels fit and transform
    kernels_available = kernel_metrics()
    for kern in kernels_available:
        trans = Nystroem(n_components=2, kernel=kern, random_state=rnd)
        X_transformed = trans.fit(X).transform(X)
        assert X_transformed.shape == (X.shape[0], 2)
Exemple #2
0
def test_decision_function():
    # Test decision_function
    # Sanity check, test that decision_function implemented in python
    # returns the same as the one in libsvm
    # multi class:
    clf = svm.SVC(kernel='linear', C=0.1,
                  decision_function_shape='ovo').fit(iris.data, iris.target)

    dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_

    assert_array_almost_equal(dec, clf.decision_function(iris.data))

    # binary:
    clf.fit(X, Y)
    dec = np.dot(X, clf.coef_.T) + clf.intercept_
    prediction = clf.predict(X)
    assert_array_almost_equal(dec.ravel(), clf.decision_function(X))
    assert_array_almost_equal(
        prediction,
        clf.classes_[(clf.decision_function(X) > 0).astype(np.int)])
    expected = np.array([-1., -0.66, -1., 0.66, 1., 1.])
    assert_array_almost_equal(clf.decision_function(X), expected, 2)

    # kernel binary:
    clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo')
    clf.fit(X, Y)

    rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma)
    dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_
    assert_array_almost_equal(dec.ravel(), clf.decision_function(X))
Exemple #3
0
def test_pairwise_kernels_callable():
    # Test the pairwise_kernels helper function
    # with a callable function, with given keywords.
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))

    metric = callable_rbf_kernel
    kwds = {'gamma': 0.1}
    K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=Y, **kwds)
    assert_array_almost_equal(K1, K2)

    # callable function, X=Y
    K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=X, **kwds)
    assert_array_almost_equal(K1, K2)
Exemple #4
0
def test_spectral_embedding_deterministic():
    # Test that Spectral Embedding is deterministic
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    embedding_1 = spectral_embedding(sims)
    embedding_2 = spectral_embedding(sims)
    assert_array_almost_equal(embedding_1, embedding_2)
Exemple #5
0
def test_pairwise_kernels_filter_param():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    K = rbf_kernel(X, Y, gamma=0.1)
    params = {"gamma": 0.1, "blabla": ":)"}
    K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params)
    assert_array_almost_equal(K, K2)

    assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params)
Exemple #6
0
def test_spectral_embedding_callable_affinity(seed=36):
    # Test spectral embedding with callable affinity
    gamma = 0.9
    kern = rbf_kernel(S, gamma=gamma)
    se_callable = SpectralEmbedding(
        n_components=2,
        affinity=(lambda x: rbf_kernel(x, gamma=gamma)),
        gamma=gamma,
        random_state=np.random.RandomState(seed))
    se_rbf = SpectralEmbedding(n_components=2,
                               affinity="rbf",
                               gamma=gamma,
                               random_state=np.random.RandomState(seed))
    embed_rbf = se_rbf.fit_transform(S)
    embed_callable = se_callable.fit_transform(S)
    assert_array_almost_equal(se_callable.affinity_matrix_,
                              se_rbf.affinity_matrix_)
    assert_array_almost_equal(kern, se_rbf.affinity_matrix_)
    assert _check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05)
Exemple #7
0
def test_gridsearch_pipeline_precomputed():
    # Test if we can do a grid-search to find parameters to separate
    # circles with a perceptron model using a precomputed kernel.
    X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0)
    kpca = KernelPCA(kernel="precomputed", n_components=2)
    pipeline = Pipeline([("kernel_pca", kpca),
                         ("Perceptron", Perceptron(max_iter=5))])
    param_grid = dict(Perceptron__max_iter=np.arange(1, 5))
    grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
    X_kernel = rbf_kernel(X, gamma=2.)
    grid_search.fit(X_kernel, y)
    assert grid_search.best_score_ == 1
Exemple #8
0
def test_nystroem_singular_kernel():
    # test that nystroem works with singular kernel matrix
    rng = np.random.RandomState(0)
    X = rng.rand(10, 20)
    X = np.vstack([X] * 2)  # duplicate samples

    gamma = 100
    N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X)
    X_transformed = N.transform(X)

    K = rbf_kernel(X, gamma=gamma)

    assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T))
    assert np.all(np.isfinite(Y))
Exemple #9
0
def test_spectral_embedding_precomputed_affinity(seed=36):
    # Test spectral embedding with precomputed kernel
    gamma = 1.0
    se_precomp = SpectralEmbedding(n_components=2,
                                   affinity="precomputed",
                                   random_state=np.random.RandomState(seed))
    se_rbf = SpectralEmbedding(n_components=2,
                               affinity="rbf",
                               gamma=gamma,
                               random_state=np.random.RandomState(seed))
    embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma))
    embed_rbf = se_rbf.fit_transform(S)
    assert_array_almost_equal(se_precomp.affinity_matrix_,
                              se_rbf.affinity_matrix_)
    assert _check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05)
Exemple #10
0
def test_rbf_sampler():
    # test that RBFSampler approximates kernel on random data
    # compute exact kernel
    gamma = 10.
    kernel = rbf_kernel(X, Y, gamma=gamma)

    # approximate kernel mapping
    rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42)
    X_trans = rbf_transform.fit_transform(X)
    Y_trans = rbf_transform.transform(Y)
    kernel_approx = np.dot(X_trans, Y_trans.T)

    error = kernel - kernel_approx
    assert np.abs(np.mean(error)) <= 0.01  # close to unbiased
    np.abs(error, out=error)
    assert np.max(error) <= 0.1  # nothing too far off
    assert np.mean(error) <= 0.05  # mean is fairly close
Exemple #11
0
def test_spectral_embedding_first_eigen_vector():
    # Test that the first eigenvector of spectral_embedding
    # is constant and that the second is not (for a connected graph)
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 2

    for seed in range(10):
        embedding = spectral_embedding(sims,
                                       norm_laplacian=False,
                                       n_components=n_components,
                                       drop_first=False,
                                       random_state=seed)

        assert np.std(embedding[:, 0]) == pytest.approx(0)
        assert np.std(embedding[:, 1]) > 1e-3
Exemple #12
0
def test_nystroem_default_parameters():
    rnd = np.random.RandomState(42)
    X = rnd.uniform(size=(10, 4))

    # rbf kernel should behave as gamma=None by default
    # aka gamma = 1 / n_features
    nystroem = Nystroem(n_components=10)
    X_transformed = nystroem.fit_transform(X)
    K = rbf_kernel(X, gamma=None)
    K2 = np.dot(X_transformed, X_transformed.T)
    assert_array_almost_equal(K, K2)

    # chi2 kernel should behave as gamma=1 by default
    nystroem = Nystroem(kernel='chi2', n_components=10)
    X_transformed = nystroem.fit_transform(X)
    K = chi2_kernel(X, gamma=1)
    K2 = np.dot(X_transformed, X_transformed.T)
    assert_array_almost_equal(K, K2)
Exemple #13
0
def test_spectral_embedding_unnormalized():
    # Test that spectral_embedding is also processing unnormalized laplacian
    # correctly
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 8
    embedding_1 = spectral_embedding(sims,
                                     norm_laplacian=False,
                                     n_components=n_components,
                                     drop_first=False)

    # Verify using manual computation with dense eigh
    laplacian, dd = csgraph.laplacian(sims, normed=False, return_diag=True)
    _, diffusion_map = eigh(laplacian)
    embedding_2 = diffusion_map.T[:n_components]
    embedding_2 = _deterministic_vector_sign_flip(embedding_2).T

    assert_array_almost_equal(embedding_1, embedding_2)
Exemple #14
0
def test_svr_predict():
    # Test SVR's decision_function
    # Sanity check, test that predict implemented in python
    # returns the same as the one in libsvm

    X = iris.data
    y = iris.target

    # linear kernel
    reg = svm.SVR(kernel='linear', C=0.1).fit(X, y)

    dec = np.dot(X, reg.coef_.T) + reg.intercept_
    assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel())

    # rbf kernel
    reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y)

    rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma)
    dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_
    assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel())
Exemple #15
0
from mrex.metrics.pairwise import rbf_kernel
from mrex.datasets import make_classification
from mrex.exceptions import ConvergenceWarning
from numpy.testing import assert_array_almost_equal
from numpy.testing import assert_array_equal

ESTIMATORS = [
    (label_propagation.LabelPropagation, {
        'kernel': 'rbf'
    }),
    (label_propagation.LabelPropagation, {
        'kernel': 'knn',
        'n_neighbors': 2
    }),
    (label_propagation.LabelPropagation, {
        'kernel': lambda x, y: rbf_kernel(x, y, gamma=20)
    }),
    (label_propagation.LabelSpreading, {
        'kernel': 'rbf'
    }),
    (label_propagation.LabelSpreading, {
        'kernel': 'knn',
        'n_neighbors': 2
    }),
    (label_propagation.LabelSpreading, {
        'kernel': lambda x, y: rbf_kernel(x, y, gamma=20)
    }),
]


def test_fit_transduction():
Exemple #16
0
def callable_rbf_kernel(x, y, **kwds):
    # Callable version of pairwise.rbf_kernel.
    K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds)
    return K
Exemple #17
0
def test_rbf_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = rbf_kernel(X, X)
    # the diagonal elements of a rbf kernel are 1
    assert_array_almost_equal(K.flat[::6], np.ones(5))