Exemple #1
0
def test_multilabel_classification():
    # Test that multi-label classification works as expected.
    # test fit method
    X, y = make_multilabel_classification(n_samples=50,
                                          random_state=0,
                                          return_indicator=True)
    mlp = MLPClassifier(solver='lbfgs',
                        hidden_layer_sizes=50,
                        alpha=1e-5,
                        max_iter=150,
                        random_state=0,
                        activation='logistic',
                        learning_rate_init=0.2)
    mlp.fit(X, y)
    assert mlp.score(X, y) > 0.97

    # test partial fit method
    mlp = MLPClassifier(solver='sgd',
                        hidden_layer_sizes=50,
                        max_iter=150,
                        random_state=0,
                        activation='logistic',
                        alpha=1e-5,
                        learning_rate_init=0.2)
    for i in range(100):
        mlp.partial_fit(X, y, classes=[0, 1, 2, 3, 4])
    assert mlp.score(X, y) > 0.9

    # Make sure early stopping still work now that spliting is stratified by
    # default (it is disabled for multilabel classification)
    mlp = MLPClassifier(early_stopping=True)
    mlp.fit(X, y).predict(X)
Exemple #2
0
def test_partial_fit_classification():
    # Test partial_fit on classification.
    # `partial_fit` should yield the same results as 'fit' for binary and
    # multi-class classification.
    for X, y in classification_datasets:
        X = X
        y = y
        mlp = MLPClassifier(solver='sgd',
                            max_iter=100,
                            random_state=1,
                            tol=0,
                            alpha=1e-5,
                            learning_rate_init=0.2)

        with ignore_warnings(category=ConvergenceWarning):
            mlp.fit(X, y)
        pred1 = mlp.predict(X)
        mlp = MLPClassifier(solver='sgd',
                            random_state=1,
                            alpha=1e-5,
                            learning_rate_init=0.2)
        for i in range(100):
            mlp.partial_fit(X, y, classes=np.unique(y))
        pred2 = mlp.predict(X)
        assert_array_equal(pred1, pred2)
        assert mlp.score(X, y) > 0.95
Exemple #3
0
def plot_on_dataset(X, y, ax, name):
    # for each dataset, plot learning for each learning strategy
    print("\nlearning on dataset %s" % name)
    ax.set_title(name)

    X = MinMaxScaler().fit_transform(X)
    mlps = []
    if name == "digits":
        # digits is larger but converges fairly quickly
        max_iter = 15
    else:
        max_iter = 400

    for label, param in zip(labels, params):
        print("training: %s" % label)
        mlp = MLPClassifier(random_state=0, max_iter=max_iter, **param)

        # some parameter combinations will not converge as can be seen on the
        # plots so they are ignored here
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore",
                                    category=ConvergenceWarning,
                                    module="mrex")
            mlp.fit(X, y)

        mlps.append(mlp)
        print("Training set score: %f" % mlp.score(X, y))
        print("Training set loss: %f" % mlp.loss_)
    for mlp, label, args in zip(mlps, labels, plot_args):
        ax.plot(mlp.loss_curve_, label=label, **args)
Exemple #4
0
def test_partial_fit_unseen_classes():
    # Non regression test for bug 6994
    # Tests for labeling errors in partial fit

    clf = MLPClassifier(random_state=0)
    clf.partial_fit([[1], [2], [3]], ["a", "b", "c"],
                    classes=["a", "b", "c", "d"])
    clf.partial_fit([[4]], ["d"])
    assert clf.score([[1], [2], [3], [4]], ["a", "b", "c", "d"]) > 0
Exemple #5
0
def test_lbfgs_classification(X, y):
    # Test lbfgs on classification.
    # It should achieve a score higher than 0.95 for the binary and multi-class
    # versions of the digits dataset.
    X_train = X[:150]
    y_train = y[:150]
    X_test = X[150:]
    expected_shape_dtype = (X_test.shape[0], y_train.dtype.kind)

    for activation in ACTIVATION_TYPES:
        mlp = MLPClassifier(solver='lbfgs',
                            hidden_layer_sizes=50,
                            max_iter=150,
                            shuffle=True,
                            random_state=1,
                            activation=activation)
        mlp.fit(X_train, y_train)
        y_predict = mlp.predict(X_test)
        assert mlp.score(X_train, y_train) > 0.95
        assert ((y_predict.shape[0],
                 y_predict.dtype.kind) == expected_shape_dtype)
Exemple #6
0
X = X / 255.

# rescale the data, use the traditional train/test split
X_train, X_test = X[:60000], X[60000:]
y_train, y_test = y[:60000], y[60000:]

mlp = MLPClassifier(hidden_layer_sizes=(50, ),
                    max_iter=10,
                    alpha=1e-4,
                    solver='sgd',
                    verbose=10,
                    random_state=1,
                    learning_rate_init=.1)

mlp.fit(X_train, y_train)
print("Training set score: %f" % mlp.score(X_train, y_train))
print("Test set score: %f" % mlp.score(X_test, y_test))

fig, axes = plt.subplots(4, 4)
# use global min / max to ensure all weights are shown on the same scale
vmin, vmax = mlp.coefs_[0].min(), mlp.coefs_[0].max()
for coef, ax in zip(mlp.coefs_[0].T, axes.ravel()):
    ax.matshow(coef.reshape(28, 28),
               cmap=plt.cm.gray,
               vmin=.5 * vmin,
               vmax=.5 * vmax)
    ax.set_xticks(())
    ax.set_yticks(())

plt.show()