Exemple #1
0
def test_pipeline_methods_preprocessing_svm():
    # Test the various methods of the pipeline (preprocessing + svm).
    iris = load_iris()
    X = iris.data
    y = iris.target
    n_samples = X.shape[0]
    n_classes = len(np.unique(y))
    scaler = StandardScaler()
    pca = PCA(n_components=2, svd_solver='randomized', whiten=True)
    clf = SVC(probability=True, random_state=0, decision_function_shape='ovr')

    for preprocessing in [scaler, pca]:
        pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)])
        pipe.fit(X, y)

        # check shapes of various prediction functions
        predict = pipe.predict(X)
        assert predict.shape == (n_samples,)

        proba = pipe.predict_proba(X)
        assert proba.shape == (n_samples, n_classes)

        log_proba = pipe.predict_log_proba(X)
        assert log_proba.shape == (n_samples, n_classes)

        decision_function = pipe.decision_function(X)
        assert decision_function.shape == (n_samples, n_classes)

        pipe.score(X, y)
Exemple #2
0
def test_predict_with_predict_params():
    # tests that Pipeline passes predict_params to the final estimator
    # when predict is invoked
    pipe = Pipeline([('transf', Transf()), ('clf', DummyEstimatorParams())])
    pipe.fit(None, None)
    pipe.predict(X=None, got_attribute=True)

    assert pipe.named_steps['clf'].got_attribute
Exemple #3
0
def test_pipeline_sample_weight_supported():
    # Pipeline should pass sample_weight
    X = np.array([[1, 2]])
    pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())])
    pipe.fit(X, y=None)
    assert pipe.score(X) == 3
    assert pipe.score(X, y=None) == 3
    assert pipe.score(X, y=None, sample_weight=None) == 3
    assert pipe.score(X, sample_weight=np.array([2, 3])) == 8
Exemple #4
0
def test_pipeline_init_tuple():
    # Pipeline accepts steps as tuple
    X = np.array([[1, 2]])
    pipe = Pipeline((('transf', Transf()), ('clf', FitParamT())))
    pipe.fit(X, y=None)
    pipe.score(X)

    pipe.set_params(transf='passthrough')
    pipe.fit(X, y=None)
    pipe.score(X)
Exemple #5
0
def test_pipeline_with_cache_attribute():
    X = np.array([[1, 2]])
    pipe = Pipeline([('transf', Transf()), ('clf', Mult())],
                    memory=DummyMemory())
    pipe.fit(X, y=None)
    dummy = WrongDummyMemory()
    pipe = Pipeline([('transf', Transf()), ('clf', Mult())],
                    memory=dummy)
    assert_raises_regex(ValueError, "'memory' should be None, a string or"
                        " have the same interface as joblib.Memory."
                        " Got memory='{}' instead.".format(dummy), pipe.fit, X)
Exemple #6
0
def test_pipeline_sample_weight_unsupported():
    # When sample_weight is None it shouldn't be passed
    X = np.array([[1, 2]])
    pipe = Pipeline([('transf', Transf()), ('clf', Mult())])
    pipe.fit(X, y=None)
    assert pipe.score(X) == 3
    assert pipe.score(X, sample_weight=None) == 3
    assert_raise_message(
        TypeError,
        "score() got an unexpected keyword argument 'sample_weight'",
        pipe.score, X, sample_weight=np.array([2, 3])
    )
Exemple #7
0
def test_pipeline_methods_anova():
    # Test the various methods of the pipeline (anova).
    iris = load_iris()
    X = iris.data
    y = iris.target
    # Test with Anova + LogisticRegression
    clf = LogisticRegression()
    filter1 = SelectKBest(f_classif, k=2)
    pipe = Pipeline([('anova', filter1), ('logistic', clf)])
    pipe.fit(X, y)
    pipe.predict(X)
    pipe.predict_proba(X)
    pipe.predict_log_proba(X)
    pipe.score(X, y)
Exemple #8
0
def test_pipeline_methods_pca_svm():
    # Test the various methods of the pipeline (pca + svm).
    iris = load_iris()
    X = iris.data
    y = iris.target
    # Test with PCA + SVC
    clf = SVC(probability=True, random_state=0)
    pca = PCA(svd_solver='full', n_components='mle', whiten=True)
    pipe = Pipeline([('pca', pca), ('svc', clf)])
    pipe.fit(X, y)
    pipe.predict(X)
    pipe.predict_proba(X)
    pipe.predict_log_proba(X)
    pipe.score(X, y)
Exemple #9
0
def test_pipeline_score_samples_pca_lof():
    iris = load_iris()
    X = iris.data
    # Test that the score_samples method is implemented on a pipeline.
    # Test that the score_samples method on pipeline yields same results as
    # applying transform and score_samples steps separately.
    pca = PCA(svd_solver='full', n_components='mle', whiten=True)
    lof = LocalOutlierFactor(novelty=True)
    pipe = Pipeline([('pca', pca), ('lof', lof)])
    pipe.fit(X)
    # Check the shapes
    assert pipe.score_samples(X).shape == (X.shape[0],)
    # Check the values
    lof.fit(pca.fit_transform(X))
    assert_allclose(pipe.score_samples(X), lof.score_samples(pca.transform(X)))
Exemple #10
0
def test_pipeline_fit_params():
    # Test that the pipeline can take fit parameters
    pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())])
    pipe.fit(X=None, y=None, clf__should_succeed=True)
    # classifier should return True
    assert pipe.predict(None)
    # and transformer params should not be changed
    assert pipe.named_steps['transf'].a is None
    assert pipe.named_steps['transf'].b is None
    # invalid parameters should raise an error message
    assert_raise_message(
        TypeError,
        "fit() got an unexpected keyword argument 'bad'",
        pipe.fit, None, None, clf__bad=True
    )
Exemple #11
0
def test_pipeline_correctly_adjusts_steps(passthrough):
    X = np.array([[1]])
    y = np.array([1])
    mult2 = Mult(mult=2)
    mult3 = Mult(mult=3)
    mult5 = Mult(mult=5)

    pipeline = Pipeline([
        ('m2', mult2),
        ('bad', passthrough),
        ('m3', mult3),
        ('m5', mult5)
    ])

    pipeline.fit(X, y)
    expected_names = ['m2', 'bad', 'm3', 'm5']
    actual_names = [name for name, _ in pipeline.steps]
    assert expected_names == actual_names
Exemple #12
0
def test_pipeline_transform():
    # Test whether pipeline works with a transformer at the end.
    # Also test pipeline.transform and pipeline.inverse_transform
    iris = load_iris()
    X = iris.data
    pca = PCA(n_components=2, svd_solver='full')
    pipeline = Pipeline([('pca', pca)])

    # test transform and fit_transform:
    X_trans = pipeline.fit(X).transform(X)
    X_trans2 = pipeline.fit_transform(X)
    X_trans3 = pca.fit_transform(X)
    assert_array_almost_equal(X_trans, X_trans2)
    assert_array_almost_equal(X_trans, X_trans3)

    X_back = pipeline.inverse_transform(X_trans)
    X_back2 = pca.inverse_transform(X_trans)
    assert_array_almost_equal(X_back, X_back2)
Exemple #13
0
# TASK: Build a vectorizer that splits strings into sequence of 1 to 3
# characters instead of word tokens
vectorizer = TfidfVectorizer(ngram_range=(1, 3),
                             analyzer='char',
                             use_idf=False)

# TASK: Build a vectorizer / classifier pipeline using the previous analyzer
# the pipeline instance should stored in a variable named clf
clf = Pipeline([
    ('vec', vectorizer),
    ('clf', Perceptron()),
])

# TASK: Fit the pipeline on the training set
clf.fit(docs_train, y_train)

# TASK: Predict the outcome on the testing set in a variable named y_predicted
y_predicted = clf.predict(docs_test)

# Print the classification report
print(
    metrics.classification_report(y_test,
                                  y_predicted,
                                  target_names=dataset.target_names))

# Plot the confusion matrix
cm = metrics.confusion_matrix(y_test, y_predicted)
print(cm)

#import matlotlib.pyplot as plt
Exemple #14
0
degrees = [1, 4, 15]

X = np.sort(np.random.rand(n_samples))
y = true_fun(X) + np.random.randn(n_samples) * 0.1

plt.figure(figsize=(14, 5))
for i in range(len(degrees)):
    ax = plt.subplot(1, len(degrees), i + 1)
    plt.setp(ax, xticks=(), yticks=())

    polynomial_features = PolynomialFeatures(degree=degrees[i],
                                             include_bias=False)
    linear_regression = LinearRegression()
    pipeline = Pipeline([("polynomial_features", polynomial_features),
                         ("linear_regression", linear_regression)])
    pipeline.fit(X[:, np.newaxis], y)

    # Evaluate the models using crossvalidation
    scores = cross_val_score(pipeline, X[:, np.newaxis], y,
                             scoring="neg_mean_squared_error", cv=10)

    X_test = np.linspace(0, 1, 100)
    plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model")
    plt.plot(X_test, true_fun(X_test), label="True function")
    plt.scatter(X, y, edgecolor='b', s=20, label="Samples")
    plt.xlabel("x")
    plt.ylabel("y")
    plt.xlim((0, 1))
    plt.ylim((-2, 2))
    plt.legend(loc="best")
    plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format(
Exemple #15
0
# #############################################################################
# Compute the coefs of a Bayesian Ridge with GridSearch
cv = KFold(2)  # cross-validation generator for model selection
ridge = BayesianRidge()
cachedir = tempfile.mkdtemp()
mem = Memory(location=cachedir, verbose=1)

# Ward agglomeration followed by BayesianRidge
connectivity = grid_to_graph(n_x=size, n_y=size)
ward = FeatureAgglomeration(n_clusters=10,
                            connectivity=connectivity,
                            memory=mem)
clf = Pipeline([('ward', ward), ('ridge', ridge)])
# Select the optimal number of parcels with grid search
clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv)
clf.fit(X, y)  # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_)
coef_agglomeration_ = coef_.reshape(size, size)

# Anova univariate feature selection followed by BayesianRidge
f_regression = mem.cache(feature_selection.f_regression)  # caching function
anova = feature_selection.SelectPercentile(f_regression)
clf = Pipeline([('anova', anova), ('ridge', ridge)])
# Select the optimal percentage of features with grid search
clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv)
clf.fit(X, y)  # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1))
coef_selection_ = coef_.reshape(size, size)
Exemple #16
0
                                                    stratify=y,
                                                    random_state=42)

categorical_pipe = Pipeline([
    ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
])
numerical_pipe = Pipeline([('imputer', SimpleImputer(strategy='mean'))])

preprocessing = ColumnTransformer([('cat', categorical_pipe,
                                    categorical_columns),
                                   ('num', numerical_pipe, numerical_columns)])

rf = Pipeline([('preprocess', preprocessing),
               ('classifier', RandomForestClassifier(random_state=42))])
rf.fit(X_train, y_train)

##############################################################################
# Accuracy of the Model
# ---------------------
# Prior to inspecting the feature importances, it is important to check that
# the model predictive performance is high enough. Indeed there would be little
# interest of inspecting the important features of a non-predictive model.
#
# Here one can observe that the train accuracy is very high (the forest model
# has enough capacity to completely memorize the training set) but it can still
# generalize well enough to the test set thanks to the built-in bagging of
# random forests.
#
# It might be possible to trade some accuracy on the training set for a
# slightly better accuracy on the test set by limiting the capacity of the
Exemple #17
0
                        ]),
                        1),
                ],

                # weight components in ColumnTransformer
                transformer_weights={
                    'subject': 0.8,
                    'body_bow': 0.5,
                    'body_stats': 1.0,
                })),

        # Use a SVC classifier on the combined features
        ('svc', LinearSVC(dual=False)),
    ],
    verbose=True)

# limit the list of categories to make running this example faster.
categories = ['alt.atheism', 'talk.religion.misc']
X_train, y_train = fetch_20newsgroups(random_state=1,
                                      subset='train',
                                      categories=categories,
                                      return_X_y=True)
X_test, y_test = fetch_20newsgroups(random_state=1,
                                    subset='test',
                                    categories=categories,
                                    return_X_y=True)

pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
print(classification_report(y_pred, y_test))
Exemple #18
0
def test_pipeline_memory():
    iris = load_iris()
    X = iris.data
    y = iris.target
    cachedir = mkdtemp()
    try:
        if LooseVersion(joblib.__version__) < LooseVersion('0.12'):
            # Deal with change of API in joblib
            memory = joblib.Memory(cachedir=cachedir, verbose=10)
        else:
            memory = joblib.Memory(location=cachedir, verbose=10)
        # Test with Transformer + SVC
        clf = SVC(probability=True, random_state=0)
        transf = DummyTransf()
        pipe = Pipeline([('transf', clone(transf)), ('svc', clf)])
        cached_pipe = Pipeline([('transf', transf), ('svc', clf)],
                               memory=memory)

        # Memoize the transformer at the first fit
        cached_pipe.fit(X, y)
        pipe.fit(X, y)
        # Get the time stamp of the transformer in the cached pipeline
        ts = cached_pipe.named_steps['transf'].timestamp_
        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
        assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe.named_steps['transf'].means_)
        assert not hasattr(transf, 'means_')
        # Check that we are reading the cache while fitting
        # a second time
        cached_pipe.fit(X, y)
        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
        assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe.named_steps['transf'].means_)
        assert ts == cached_pipe.named_steps['transf'].timestamp_
        # Create a new pipeline with cloned estimators
        # Check that even changing the name step does not affect the cache hit
        clf_2 = SVC(probability=True, random_state=0)
        transf_2 = DummyTransf()
        cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)],
                                 memory=memory)
        cached_pipe_2.fit(X, y)

        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X))
        assert_array_equal(pipe.predict_proba(X),
                           cached_pipe_2.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe_2.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe_2.named_steps['transf_2'].means_)
        assert ts == cached_pipe_2.named_steps['transf_2'].timestamp_
    finally:
        shutil.rmtree(cachedir)
Exemple #19
0
categorical_transformer = Pipeline(
    steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')
            ), ('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(transformers=[(
    'num', numeric_transformer,
    numeric_features), ('cat', categorical_transformer, categorical_features)])

# Append classifier to preprocessing pipeline.
# Now we have a full prediction pipeline.
clf = Pipeline(steps=[('preprocessor',
                       preprocessor), ('classifier', LogisticRegression())])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf.fit(X_train, y_train)
print("model score: %.3f" % clf.score(X_test, y_test))

###############################################################################
# Using the prediction pipeline in a grid search
###############################################################################
# Grid search can also be performed on the different preprocessing steps
# defined in the ``ColumnTransformer`` object, together with the classifier's
# hyperparameters as part of the ``Pipeline``.
# We will search for both the imputer strategy of the numeric preprocessing
# and the regularization parameter of the logistic regression using
# :class:`mrex.model_selection.GridSearchCV`.

param_grid = {
    'preprocessor__num__imputer__strategy': ['mean', 'median'],
    'classifier__C': [0.1, 1.0, 10, 100],
Exemple #20
0
def test_set_pipeline_step_passthrough(passthrough):
    X = np.array([[1]])
    y = np.array([1])
    mult2 = Mult(mult=2)
    mult3 = Mult(mult=3)
    mult5 = Mult(mult=5)

    def make():
        return Pipeline([('m2', mult2), ('m3', mult3), ('last', mult5)])

    pipeline = make()

    exp = 2 * 3 * 5
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))

    pipeline.set_params(m3=passthrough)
    exp = 2 * 5
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))
    assert (pipeline.get_params(deep=True) ==
                      {'steps': pipeline.steps,
                       'm2': mult2,
                       'm3': passthrough,
                       'last': mult5,
                       'memory': None,
                       'm2__mult': 2,
                       'last__mult': 5,
                       'verbose': False
                       })

    pipeline.set_params(m2=passthrough)
    exp = 5
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))

    # for other methods, ensure no AttributeErrors on None:
    other_methods = ['predict_proba', 'predict_log_proba',
                     'decision_function', 'transform', 'score']
    for method in other_methods:
        getattr(pipeline, method)(X)

    pipeline.set_params(m2=mult2)
    exp = 2 * 5
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))

    pipeline = make()
    pipeline.set_params(last=passthrough)
    # mult2 and mult3 are active
    exp = 6
    assert_array_equal([[exp]], pipeline.fit(X, y).transform(X))
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))
    assert_raise_message(AttributeError,
                         "'str' object has no attribute 'predict'",
                         getattr, pipeline, 'predict')

    # Check 'passthrough' step at construction time
    exp = 2 * 5
    pipeline = Pipeline(
        [('m2', mult2), ('m3', passthrough), ('last', mult5)])
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))
Exemple #21
0
# #############################################################################
# Training

# Hyper-parameters. These were set by cross-validation,
# using a GridSearchCV. Here we are not performing cross-validation to
# save time.
rbm.learning_rate = 0.06
rbm.n_iter = 10
# More components tend to give better prediction performance, but larger
# fitting time
rbm.n_components = 100
logistic.C = 6000

# Training RBM-Logistic Pipeline
rbm_features_classifier.fit(X_train, Y_train)

# Training the Logistic regression classifier directly on the pixel
raw_pixel_classifier = clone(logistic)
raw_pixel_classifier.C = 100.
raw_pixel_classifier.fit(X_train, Y_train)

# #############################################################################
# Evaluation

Y_pred = rbm_features_classifier.predict(X_test)
print("Logistic regression using RBM features:\n%s\n" %
      (metrics.classification_report(Y_test, Y_pred)))

Y_pred = raw_pixel_classifier.predict(X_test)
print("Logistic regression using raw pixel features:\n%s\n" %