Exemple #1
0
def check_warm_start_oob(name):
    # Test that the warm start computes oob score when asked.
    X, y = hastie_X, hastie_y
    ForestEstimator = FOREST_ESTIMATORS[name]
    # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning.
    clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False,
                          random_state=1, bootstrap=True, oob_score=True)
    clf.fit(X, y)

    clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False,
                            random_state=1, bootstrap=True, oob_score=False)
    clf_2.fit(X, y)

    clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15)
    clf_2.fit(X, y)

    assert hasattr(clf_2, 'oob_score_')
    assert clf.oob_score_ == clf_2.oob_score_

    # Test that oob_score is computed even if we don't need to train
    # additional trees.
    clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True,
                            random_state=1, bootstrap=True, oob_score=False)
    clf_3.fit(X, y)
    assert not hasattr(clf_3, 'oob_score_')

    clf_3.set_params(oob_score=True)
    ignore_warnings(clf_3.fit)(X, y)

    assert clf.oob_score_ == clf_3.oob_score_
Exemple #2
0
def test_no_atoms():
    y_empty = np.zeros_like(y)
    Xy_empty = np.dot(X.T, y_empty)
    gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1)
    gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1)
    assert np.all(gamma_empty == 0)
    assert np.all(gamma_empty_gram == 0)
Exemple #3
0
def test_enet_toy_list_input():
    # Test ElasticNet for various values of alpha and l1_ratio with list X

    X = np.array([[-1], [0], [1]])
    X = sp.csc_matrix(X)
    Y = [-1, 0, 1]  # just a straight line
    T = np.array([[2], [3], [4]])  # test sample

    # this should be the same as unregularized least squares
    clf = ElasticNet(alpha=0, l1_ratio=1.0)
    # catch warning about alpha=0.
    # this is discouraged but should work.
    ignore_warnings(clf.fit)(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.45454], 3)
    assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
    assert_almost_equal(clf.dual_gap_, 0)
Exemple #4
0
def test_enet_l1_ratio():
    # Test that an error message is raised if an estimator that
    # uses _alpha_grid is called with l1_ratio=0
    msg = ("Automatic alpha grid generation is not supported for l1_ratio=0. "
           "Please supply a grid by providing your estimator with the "
           "appropriate `alphas=` argument.")
    X = np.array([[1, 2, 4, 5, 8], [3, 5, 7, 7, 8]]).T
    y = np.array([12, 10, 11, 21, 5])

    assert_raise_message(ValueError, msg,
                         ElasticNetCV(l1_ratio=0, random_state=42).fit, X, y)
    assert_raise_message(
        ValueError, msg,
        MultiTaskElasticNetCV(l1_ratio=0, random_state=42).fit, X, y[:, None])

    # Test that l1_ratio=0 is allowed if we supply a grid manually
    alphas = [0.1, 10]
    estkwds = {'alphas': alphas, 'random_state': 42}
    est_desired = ElasticNetCV(l1_ratio=0.00001, **estkwds)
    est = ElasticNetCV(l1_ratio=0, **estkwds)
    with ignore_warnings():
        est_desired.fit(X, y)
        est.fit(X, y)
    assert_array_almost_equal(est.coef_, est_desired.coef_, decimal=5)

    est_desired = MultiTaskElasticNetCV(l1_ratio=0.00001, **estkwds)
    est = MultiTaskElasticNetCV(l1_ratio=0, **estkwds)
    with ignore_warnings():
        est.fit(X, y[:, None])
        est_desired.fit(X, y[:, None])
    assert_array_almost_equal(est.coef_, est_desired.coef_, decimal=5)
Exemple #5
0
def test_check_estimator_clones():
    # check that check_estimator doesn't modify the estimator it receives
    from mrex.datasets import load_iris
    iris = load_iris()

    for Estimator in [
            GaussianMixture, LinearRegression, RandomForestClassifier, NMF,
            SGDClassifier, MiniBatchKMeans
    ]:
        with ignore_warnings(category=(FutureWarning, DeprecationWarning)):
            # when 'est = SGDClassifier()'
            est = Estimator()
            set_checking_parameters(est)
            set_random_state(est)
            # without fitting
            old_hash = joblib.hash(est)
            check_estimator(est)
        assert old_hash == joblib.hash(est)

        with ignore_warnings(category=(FutureWarning, DeprecationWarning)):
            # when 'est = SGDClassifier()'
            est = Estimator()
            set_checking_parameters(est)
            set_random_state(est)
            # with fitting
            est.fit(iris.data + 10, iris.target)
            old_hash = joblib.hash(est)
            check_estimator(est)
        assert old_hash == joblib.hash(est)
Exemple #6
0
def test_kernel_ridge_singular_kernel():
    # alpha=0 causes a LinAlgError in computing the dual coefficients,
    # which causes a fallback to a lstsq solver. This is tested here.
    pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X)
    kr = KernelRidge(kernel="linear", alpha=0)
    ignore_warnings(kr.fit)(X, y)
    pred2 = kr.predict(X)
    assert_array_almost_equal(pred, pred2)
Exemple #7
0
def test_consistent_proba():
    a = svm.SVC(probability=True, max_iter=1, random_state=0)
    with ignore_warnings(category=ConvergenceWarning):
        proba_1 = a.fit(X, Y).predict_proba(X)
    a = svm.SVC(probability=True, max_iter=1, random_state=0)
    with ignore_warnings(category=ConvergenceWarning):
        proba_2 = a.fit(X, Y).predict_proba(X)
    assert_array_almost_equal(proba_1, proba_2)
Exemple #8
0
def test_enet_float_precision():
    # Generate dataset
    X, y, X_test, y_test = build_dataset(n_samples=20, n_features=10)
    # Here we have a small number of iterations, and thus the
    # ElasticNet might not converge. This is to speed up tests

    for normalize in [True, False]:
        for fit_intercept in [True, False]:
            coef = {}
            intercept = {}
            for dtype in [np.float64, np.float32]:
                clf = ElasticNet(alpha=0.5,
                                 max_iter=100,
                                 precompute=False,
                                 fit_intercept=fit_intercept,
                                 normalize=normalize)

                X = dtype(X)
                y = dtype(y)
                ignore_warnings(clf.fit)(X, y)

                coef[('simple', dtype)] = clf.coef_
                intercept[('simple', dtype)] = clf.intercept_

                assert clf.coef_.dtype == dtype

                # test precompute Gram array
                Gram = X.T.dot(X)
                clf_precompute = ElasticNet(alpha=0.5,
                                            max_iter=100,
                                            precompute=Gram,
                                            fit_intercept=fit_intercept,
                                            normalize=normalize)
                ignore_warnings(clf_precompute.fit)(X, y)
                assert_array_almost_equal(clf.coef_, clf_precompute.coef_)
                assert_array_almost_equal(clf.intercept_,
                                          clf_precompute.intercept_)

                # test multi task enet
                multi_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis]))
                clf_multioutput = MultiTaskElasticNet(
                    alpha=0.5,
                    max_iter=100,
                    fit_intercept=fit_intercept,
                    normalize=normalize)
                clf_multioutput.fit(X, multi_y)
                coef[('multi', dtype)] = clf_multioutput.coef_
                intercept[('multi', dtype)] = clf_multioutput.intercept_
                assert clf.coef_.dtype == dtype

            for v in ['simple', 'multi']:
                assert_array_almost_equal(coef[(v, np.float32)],
                                          coef[(v, np.float64)],
                                          decimal=4)
                assert_array_almost_equal(intercept[(v, np.float32)],
                                          intercept[(v, np.float64)],
                                          decimal=4)
Exemple #9
0
def test_nans():
    # Assert that SelectKBest and SelectPercentile can handle NaNs.
    # First feature has zero variance to confuse f_classif (ANOVA) and
    # make it return a NaN.
    X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]]
    y = [1, 0, 1]

    for select in (SelectKBest(f_classif,
                               2), SelectPercentile(f_classif, percentile=67)):
        ignore_warnings(select.fit)(X, y)
        assert_array_equal(select.get_support(indices=True), np.array([1, 2]))
Exemple #10
0
def test_selectpercentile_tiebreaking():
    # Test if SelectPercentile selects the right n_features in case of ties.
    Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]]
    y = [1]
    dummy_score = lambda X, y: (X[0], X[0])
    for X in Xs:
        sel = SelectPercentile(dummy_score, percentile=34)
        X1 = ignore_warnings(sel.fit_transform)([X], y)
        assert X1.shape[1] == 1
        assert_best_scores_kept(sel)

        sel = SelectPercentile(dummy_score, percentile=67)
        X2 = ignore_warnings(sel.fit_transform)([X], y)
        assert X2.shape[1] == 2
        assert_best_scores_kept(sel)
Exemple #11
0
def test_path_parameters():
    X, y = make_sparse_data()
    max_iter = 50
    n_alphas = 10
    clf = ElasticNetCV(n_alphas=n_alphas,
                       eps=1e-3,
                       max_iter=max_iter,
                       l1_ratio=0.5,
                       fit_intercept=False)
    ignore_warnings(clf.fit)(X, y)  # new params
    assert_almost_equal(0.5, clf.l1_ratio)
    assert n_alphas == clf.n_alphas
    assert n_alphas == len(clf.alphas_)
    sparse_mse_path = clf.mse_path_
    ignore_warnings(clf.fit)(X.toarray(), y)  # compare with dense data
    assert_almost_equal(clf.mse_path_, sparse_mse_path)
Exemple #12
0
def test_pairwise_boolean_distance(metric):
    # test that we convert to boolean arrays for boolean distances
    rng = np.random.RandomState(0)
    X = rng.randn(5, 4)
    Y = X.copy()
    Y[0, 0] = 1 - Y[0, 0]

    # ignore conversion to boolean in pairwise_distances
    with ignore_warnings(category=DataConversionWarning):
        for Z in [Y, None]:
            res = pairwise_distances(X, Z, metric=metric)
            res[np.isnan(res)] = 0
            assert np.sum(res != 0) == 0

    # non-boolean arrays are converted to boolean for boolean
    # distance metrics with a data conversion warning
    msg = "Data was converted to boolean for metric %s" % metric
    with pytest.warns(DataConversionWarning, match=msg):
        pairwise_distances(X, metric=metric)

    # Check that the warning is raised if X is boolean by Y is not boolean:
    with pytest.warns(DataConversionWarning, match=msg):
        pairwise_distances(X.astype(bool), Y=Y, metric=metric)

    # Check that no warning is raised if X is already boolean and Y is None:
    with pytest.warns(None) as records:
        pairwise_distances(X.astype(bool), metric=metric)
    assert len(records) == 0
Exemple #13
0
def test_selectkbest_tiebreaking():
    # Test whether SelectKBest actually selects k features in case of ties.
    # Prior to 0.11, SelectKBest would return more features than requested.
    Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]]
    y = [1]
    dummy_score = lambda X, y: (X[0], X[0])
    for X in Xs:
        sel = SelectKBest(dummy_score, k=1)
        X1 = ignore_warnings(sel.fit_transform)([X], y)
        assert X1.shape[1] == 1
        assert_best_scores_kept(sel)

        sel = SelectKBest(dummy_score, k=2)
        X2 = ignore_warnings(sel.fit_transform)([X], y)
        assert X2.shape[1] == 2
        assert_best_scores_kept(sel)
Exemple #14
0
def test_partial_fit_classification():
    # Test partial_fit on classification.
    # `partial_fit` should yield the same results as 'fit' for binary and
    # multi-class classification.
    for X, y in classification_datasets:
        X = X
        y = y
        mlp = MLPClassifier(solver='sgd',
                            max_iter=100,
                            random_state=1,
                            tol=0,
                            alpha=1e-5,
                            learning_rate_init=0.2)

        with ignore_warnings(category=ConvergenceWarning):
            mlp.fit(X, y)
        pred1 = mlp.predict(X)
        mlp = MLPClassifier(solver='sgd',
                            random_state=1,
                            alpha=1e-5,
                            learning_rate_init=0.2)
        for i in range(100):
            mlp.partial_fit(X, y, classes=np.unique(y))
        pred2 = mlp.predict(X)
        assert_array_equal(pred1, pred2)
        assert mlp.score(X, y) > 0.95
Exemple #15
0
def test_show_versions(capsys):
    with ignore_warnings():
        show_versions()
        out, err = capsys.readouterr()

    assert 'python' in out
    assert 'numpy' in out
Exemple #16
0
def test_1d_input(name):
    X = iris.data[:, 0]
    X_2d = iris.data[:, 0].reshape((-1, 1))
    y = iris.target

    with ignore_warnings():
        check_1d_input(name, X, X_2d, y)
Exemple #17
0
def test_sparse_encode_error_default_sparsity():
    rng = np.random.RandomState(0)
    X = rng.randn(100, 64)
    D = rng.randn(2, 64)
    code = ignore_warnings(sparse_encode)(X,
                                          D,
                                          algorithm='omp',
                                          n_nonzero_coefs=None)
    assert code.shape == (100, 2)
Exemple #18
0
def test_same_multiple_output_sparse_dense():
    for normalize in [True, False]:
        l = ElasticNet(normalize=normalize)
        X = [[0, 1, 2, 3, 4], [0, 2, 5, 8, 11], [9, 10, 11, 12, 13],
             [10, 11, 12, 13, 14]]
        y = [[1, 2, 3, 4, 5], [1, 3, 6, 9, 12], [10, 11, 12, 13, 14],
             [11, 12, 13, 14, 15]]
        ignore_warnings(l.fit)(X, y)
        sample = np.array([1, 2, 3, 4, 5]).reshape(1, -1)
        predict_dense = l.predict(sample)

        l_sp = ElasticNet(normalize=normalize)
        X_sp = sp.coo_matrix(X)
        ignore_warnings(l_sp.fit)(X_sp, y)
        sample_sparse = sp.coo_matrix(sample)
        predict_sparse = l_sp.predict(sample_sparse)

        assert_array_almost_equal(predict_sparse, predict_dense)
Exemple #19
0
def test_ridge_gcv_sample_weights(gcv_mode, X_constructor, fit_intercept,
                                  n_features, y_shape, noise):
    alphas = [1e-3, .1, 1., 10., 1e3]
    rng = np.random.RandomState(0)
    n_targets = y_shape[-1] if len(y_shape) == 2 else 1
    X, y = _make_sparse_offset_regression(n_samples=11,
                                          n_features=n_features,
                                          n_targets=n_targets,
                                          random_state=0,
                                          shuffle=False,
                                          noise=noise)
    y = y.reshape(y_shape)

    sample_weight = 3 * rng.randn(len(X))
    sample_weight = (sample_weight - sample_weight.min() + 1).astype(int)
    indices = np.repeat(np.arange(X.shape[0]), sample_weight)
    sample_weight = sample_weight.astype(float)
    X_tiled, y_tiled = X[indices], y[indices]

    cv = GroupKFold(n_splits=X.shape[0])
    splits = cv.split(X_tiled, y_tiled, groups=indices)
    kfold = RidgeCV(alphas=alphas,
                    cv=splits,
                    scoring='neg_mean_squared_error',
                    fit_intercept=fit_intercept)
    # ignore warning from GridSearchCV: DeprecationWarning: The default of the
    # `iid` parameter will change from True to False in version 0.22 and will
    # be removed in 0.24
    with ignore_warnings(category=DeprecationWarning):
        kfold.fit(X_tiled, y_tiled)

    ridge_reg = Ridge(alpha=kfold.alpha_, fit_intercept=fit_intercept)
    splits = cv.split(X_tiled, y_tiled, groups=indices)
    predictions = cross_val_predict(ridge_reg, X_tiled, y_tiled, cv=splits)
    kfold_errors = (y_tiled - predictions)**2
    kfold_errors = [
        np.sum(kfold_errors[indices == i], axis=0)
        for i in np.arange(X.shape[0])
    ]
    kfold_errors = np.asarray(kfold_errors)

    X_gcv = X_constructor(X)
    gcv_ridge = RidgeCV(alphas=alphas,
                        store_cv_values=True,
                        gcv_mode=gcv_mode,
                        fit_intercept=fit_intercept)
    gcv_ridge.fit(X_gcv, y, sample_weight=sample_weight)
    if len(y_shape) == 2:
        gcv_errors = gcv_ridge.cv_values_[:, :, alphas.index(kfold.alpha_)]
    else:
        gcv_errors = gcv_ridge.cv_values_[:, alphas.index(kfold.alpha_)]

    assert kfold.alpha_ == pytest.approx(gcv_ridge.alpha_)
    assert_allclose(gcv_errors, kfold_errors, rtol=1e-3)
    assert_allclose(gcv_ridge.coef_, kfold.coef_, rtol=1e-3)
    assert_allclose(gcv_ridge.intercept_, kfold.intercept_, rtol=1e-3)
Exemple #20
0
def test_n_components():
    # Test n_components returned by linkage, average and ward tree
    rng = np.random.RandomState(0)
    X = rng.rand(5, 5)

    # Connectivity matrix having five components.
    connectivity = np.eye(5)

    for linkage_func in _TREE_BUILDERS.values():
        assert ignore_warnings(linkage_func)(X, connectivity)[1] == 5
Exemple #21
0
def test_lars_precompute(classifier):
    # Check for different values of precompute
    G = np.dot(X.T, X)

    clf = classifier(precompute=G)
    output_1 = ignore_warnings(clf.fit)(X, y).coef_
    for precompute in [True, False, 'auto', None]:
        clf = classifier(precompute=precompute)
        output_2 = clf.fit(X, y).coef_
        assert_array_almost_equal(output_1, output_2, decimal=8)
Exemple #22
0
def test_qda_regularization():
    # the default is reg_param=0. and will cause issues
    # when there is a constant variable
    clf = QuadraticDiscriminantAnalysis()
    with ignore_warnings():
        y_pred = clf.fit(X2, y6).predict(X2)
    assert np.any(y_pred != y6)

    # adding a little regularization fixes the problem
    clf = QuadraticDiscriminantAnalysis(reg_param=0.01)
    with ignore_warnings():
        clf.fit(X2, y6)
    y_pred = clf.predict(X2)
    assert_array_equal(y_pred, y6)

    # Case n_samples_in_a_class < n_features
    clf = QuadraticDiscriminantAnalysis(reg_param=0.1)
    with ignore_warnings():
        clf.fit(X5, y5)
    y_pred5 = clf.predict(X5)
    assert_array_equal(y_pred5, y5)
Exemple #23
0
def test_dict_learning_lassocd_readonly_data():
    n_components = 12
    with TempMemmap(X) as X_read_only:
        dico = DictionaryLearning(n_components,
                                  transform_algorithm='lasso_cd',
                                  transform_alpha=0.001,
                                  random_state=0,
                                  n_jobs=4)
        with ignore_warnings(category=ConvergenceWarning):
            code = dico.fit(X_read_only).transform(X_read_only)
        assert_array_almost_equal(np.dot(code, dico.components_),
                                  X_read_only,
                                  decimal=2)
Exemple #24
0
def test_get_deps_info():
    with ignore_warnings():
        deps_info = _get_deps_info()

    assert 'pip' in deps_info
    assert 'setuptools' in deps_info
    assert 'mrex' in deps_info
    assert 'numpy' in deps_info
    assert 'scipy' in deps_info
    assert 'Cython' in deps_info
    assert 'pandas' in deps_info
    assert 'matplotlib' in deps_info
    assert 'joblib' in deps_info
Exemple #25
0
def test_iforest():
    """Check Isolation Forest for various parameter settings."""
    X_train = np.array([[0, 1], [1, 2]])
    X_test = np.array([[2, 1], [1, 1]])

    grid = ParameterGrid({"n_estimators": [3],
                          "max_samples": [0.5, 1.0, 3],
                          "bootstrap": [True, False]})

    with ignore_warnings():
        for params in grid:
            IsolationForest(random_state=rng,
                            **params).fit(X_train).predict(X_test)
Exemple #26
0
def test_unstructured_linkage_tree():
    # Check that we obtain the correct solution for unstructured linkage trees.
    rng = np.random.RandomState(0)
    X = rng.randn(50, 100)
    for this_X in (X, X[0]):
        # With specified a number of clusters just for the sake of
        # raising a warning and testing the warning code
        with ignore_warnings():
            children, n_nodes, n_leaves, parent = assert_warns(UserWarning,
                                                               ward_tree,
                                                               this_X.T,
                                                               n_clusters=10)
        n_nodes = 2 * X.shape[1] - 1
        assert len(children) + n_leaves == n_nodes

    for tree_builder in _TREE_BUILDERS.values():
        for this_X in (X, X[0]):
            with ignore_warnings():
                children, n_nodes, n_leaves, parent = assert_warns(
                    UserWarning, tree_builder, this_X.T, n_clusters=10)

            n_nodes = 2 * X.shape[1] - 1
            assert len(children) + n_leaves == n_nodes
Exemple #27
0
def test_warm_start():
    X, y, _, _ = build_dataset()
    clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True)
    ignore_warnings(clf.fit)(X, y)
    ignore_warnings(clf.fit)(X, y)  # do a second round with 5 iterations

    clf2 = ElasticNet(alpha=0.1, max_iter=10)
    ignore_warnings(clf2.fit)(X, y)
    assert_array_almost_equal(clf2.coef_, clf.coef_)
Exemple #28
0
def test_warm_start_multitask_lasso():
    X, y, X_test, y_test = build_dataset()
    Y = np.c_[y, y]
    clf = MultiTaskLasso(alpha=0.1, max_iter=5, warm_start=True)
    ignore_warnings(clf.fit)(X, Y)
    ignore_warnings(clf.fit)(X, Y)  # do a second round with 5 iterations

    clf2 = MultiTaskLasso(alpha=0.1, max_iter=10)
    ignore_warnings(clf2.fit)(X, Y)
    assert_array_almost_equal(clf2.coef_, clf.coef_)
Exemple #29
0
def test_verbose_sgd():
    # Test verbose.
    X = [[3, 2], [1, 6]]
    y = [1, 0]
    clf = MLPClassifier(solver='sgd',
                        max_iter=2,
                        verbose=10,
                        hidden_layer_sizes=2)
    old_stdout = sys.stdout
    sys.stdout = output = StringIO()

    with ignore_warnings(category=ConvergenceWarning):
        clf.fit(X, y)
    clf.partial_fit(X, y)

    sys.stdout = old_stdout
    assert 'Iteration' in output.getvalue()
Exemple #30
0
def test_same_output_sparse_dense_lasso_and_enet_cv():
    X, y = make_sparse_data(n_samples=40, n_features=10)
    for normalize in [True, False]:
        clfs = ElasticNetCV(max_iter=100, normalize=normalize)
        ignore_warnings(clfs.fit)(X, y)
        clfd = ElasticNetCV(max_iter=100, normalize=normalize)
        ignore_warnings(clfd.fit)(X.toarray(), y)
        assert_almost_equal(clfs.alpha_, clfd.alpha_, 7)
        assert_almost_equal(clfs.intercept_, clfd.intercept_, 7)
        assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_)
        assert_array_almost_equal(clfs.alphas_, clfd.alphas_)

        clfs = LassoCV(max_iter=100, cv=4, normalize=normalize)
        ignore_warnings(clfs.fit)(X, y)
        clfd = LassoCV(max_iter=100, cv=4, normalize=normalize)
        ignore_warnings(clfd.fit)(X.toarray(), y)
        assert_almost_equal(clfs.alpha_, clfd.alpha_, 7)
        assert_almost_equal(clfs.intercept_, clfd.intercept_, 7)
        assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_)
        assert_array_almost_equal(clfs.alphas_, clfd.alphas_)