def fit(self, X, y): # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) return self
def fit(self, X, y, sample_weight=None): # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) # Function is only called after we verify that pandas is installed from pandas import Series if isinstance(sample_weight, Series): raise ValueError("Estimator does not accept 'sample_weight'" "of type pandas.Series") return self
def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=("csr", "csc", "coo"), accept_large_sparse=True, multi_output=True, y_numeric=True) if sp.issparse(X): if X.getformat() == "coo": if X.row.dtype == "int64" or X.col.dtype == "int64": raise ValueError( "Estimator doesn't support 64-bit indices") elif X.getformat() in ["csc", "csr"]: if X.indices.dtype == "int64" or X.indptr.dtype == "int64": raise ValueError( "Estimator doesn't support 64-bit indices") return self
def fit(self, X, y=None): self._good_attribute = 1 X, y = check_X_y(X, y) return self
def fit(self, X, y=None): self.wrong_attribute = 0 X, y = check_X_y(X, y) return self
def fit(self, X, y=None): X, y = check_X_y(X, y) return self
def fit(self, X, y): X, y = check_X_y(X, y) if (y <= 0).any(): raise ValueError('negative y values not supported!') return super().fit(X, y)
def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self
def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self