def load_unit(self, unit_id):
        """Loads the image data for display."""

        # starting fresh
        for attr in ('current_img_raw', 'current_img', 'saturated_img',
                     'tails_trimmed_img', 'background_img'):
            if hasattr(self, attr):
                delattr(self, attr)

        t1_mri_path = self.path_getter_inputs(unit_id)
        self.current_img_raw = read_image(t1_mri_path, error_msg='T1 mri')
        # crop and rescale
        self.current_img = scale_0to1(
            crop_image(self.current_img_raw, self.padding))
        self.currently_showing = None

        skip_subject = False
        if np.count_nonzero(self.current_img) == 0:
            skip_subject = True
            print('MR image is empty!')

        # # where to save the visualization to
        # out_vis_path = pjoin(self.out_dir, 'visual_qc_{}_{}'.format(self.vis_type, unit_id))

        return skip_subject
Exemple #2
0
def rescale_without_outliers(img, trim_percentile=1, padding=5):
    """This utility crops the image first, then trims the outliers, and then
    rescales it [0, 1]"""

    from mrivis.utils import crop_image

    return scale_0to1(crop_image(img, padding),
                      exclude_outliers_below=trim_percentile,
                      exclude_outliers_above=trim_percentile)
Exemple #3
0
    def attach_image_to_foreground_axes(self, image3d, cmap='gray'):
        """Attaches a given image to the foreground axes and bring it forth"""

        image3d = crop_image(image3d, self.padding)
        image3d = scale_0to1(image3d)
        slices = pick_slices(image3d, self.views, self.num_slices_per_view)
        for ax_index, (dim_index, slice_index) in enumerate(slices):
            slice_data = get_axis(image3d, dim_index, slice_index)
            self.images_fg[ax_index].set(data=slice_data, cmap=cmap)
        for ax in self.fg_axes:
            ax.set(visible=True, zorder=self.layer_order_zoomedin)
Exemple #4
0
    def display_unit(self):
        """Adds slice collage to the given axes"""

        # crop and rescale
        img = crop_image(self.current_img, self.padding)
        img = scale_0to1(img)

        # adding slices
        slices = pick_slices(img, self.views, self.num_slices_per_view)
        for ax_index, (dim_index, slice_index) in enumerate(slices):
            slice_data = get_axis(img, dim_index, slice_index)
            self.images[ax_index].set_data(slice_data)

        # updating histogram
        self.update_histogram(img)
Exemple #5
0
def collage(img_spec,
            num_rows=2,
            num_cols=6,
            rescale_method='global',
            cmap='gray',
            annot=None,
            padding=5,
            bkground_thresh=None,
            output_path=None,
            figsize=None,
            **kwargs):
    "Produces a collage of various slices from different orientations in the given 3D image"

    num_rows, num_cols, padding = check_params(num_rows, num_cols, padding)

    img = read_image(img_spec, bkground_thresh=bkground_thresh)
    img = crop_image(img, padding)

    img, (min_value, max_value) = check_rescaling_collage(img,
                                                          rescale_method,
                                                          return_extrema=True)
    num_slices_per_view = num_rows * num_cols
    slices = pick_slices(img, num_slices_per_view)

    plt.style.use('dark_background')

    num_axes = 3
    if figsize is None:
        figsize = [3 * num_axes * num_rows, 3 * num_cols]
    fig, ax = plt.subplots(num_axes * num_rows, num_cols, figsize=figsize)

    # displaying some annotation text if provided
    if annot is not None:
        fig.suptitle(annot, backgroundcolor='black', color='g')

    display_params = dict(interpolation='none',
                          cmap=cmap,
                          aspect='equal',
                          origin='lower',
                          vmin=min_value,
                          vmax=max_value)

    ax = ax.flatten()
    ax_counter = 0
    for dim_index in range(3):
        for slice_num in slices[dim_index]:
            plt.sca(ax[ax_counter])
            ax_counter = ax_counter + 1
            slice1 = get_axis(img, dim_index, slice_num)
            # slice1 = crop_image(slice1, padding)
            plt.imshow(slice1, **display_params)
            plt.axis('off')

    fig.tight_layout()

    if output_path is not None:
        output_path = output_path.replace(' ', '_')
        fig.savefig(output_path + '.png', bbox_inches='tight')

    # plt.close()

    return fig