def execute(): #pylint: disable=unused-variable lmax_option = '' if app.ARGS.lmax: lmax_option = ' -lmax ' + app.ARGS.lmax convergence_change = 0.01 * app.ARGS.convergence progress = app.ProgressBar('Optimising') iteration = 0 while iteration < app.ARGS.max_iters: prefix = 'iter' + str(iteration) + '_' # How to initialise response function? # old dwi2response command used mean & standard deviation of DWI data; however # this may force the output FODs to lmax=2 at the first iteration # Chantal used a tensor with low FA, but it'd be preferable to get the scaling right # Other option is to do as before, but get the ratio between l=0 and l=2, and # generate l=4,6,... using that amplitude ratio if iteration == 0: rf_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' # Grab the mean and standard deviation across all volumes in a single mrstats call # Also scale them to reflect the fact that we're moving to the SH basis image_stats = image.statistics('dwi.mif', mask='mask.mif', allvolumes=True) mean = image_stats.mean * math.sqrt(4.0 * math.pi) std = image_stats.std * math.sqrt(4.0 * math.pi) # Now produce the initial response function # Let's only do it to lmax 4 init_rf = [ str(mean), str(-0.5 * std), str(0.25 * std * std / mean) ] with open('init_RF.txt', 'w') as init_rf_file: init_rf_file.write(' '.join(init_rf)) else: rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF.mif' # Run CSD run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and directions of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') app.cleanup(prefix + 'FOD.mif') run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif none ' + prefix + 'amps.mif') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') app.cleanup(prefix + 'amps.mif') run.command('fixel2peaks ' + prefix + 'fixel/directions.mif ' + prefix + 'first_dir.mif -number 1') app.cleanup(prefix + 'fixel') # Revise single-fibre voxel selection based on ratio of tallest to second-tallest peak run.command('mrcalc ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div ' + prefix + 'peak_ratio.mif') app.cleanup(prefix + 'first_peaks.mif') app.cleanup(prefix + 'second_peaks.mif') run.command('mrcalc ' + prefix + 'peak_ratio.mif ' + str(app.ARGS.peak_ratio) + ' -lt ' + mask_in_path + ' -mult ' + prefix + 'SF.mif -datatype bit') app.cleanup(prefix + 'peak_ratio.mif') # Make sure image isn't empty sf_voxel_count = image.statistics(prefix + 'SF.mif', mask=prefix + 'SF.mif').count if not sf_voxel_count: raise MRtrixError( 'Aborting: All voxels have been excluded from single-fibre selection' ) # Generate a new response function run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + lmax_option) app.cleanup(prefix + 'first_dir.mif') new_rf = matrix.load_vector(prefix + 'RF.txt') progress.increment('Optimising (' + str(iteration + 1) + ' iterations, ' + str(sf_voxel_count) + ' voxels, RF: [ ' + ', '.join('{:.3f}'.format(n) for n in new_rf) + '] )') # Detect convergence # Look for a change > some percentage - don't bother looking at the masks if iteration > 0: old_rf = matrix.load_vector(rf_in_path) reiterate = False for old_value, new_value in zip(old_rf, new_rf): mean = 0.5 * (old_value + new_value) diff = math.fabs(0.5 * (old_value - new_value)) ratio = diff / mean if ratio > convergence_change: reiterate = True if not reiterate: run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.copyfile, prefix + 'SF.mif', 'voxels.mif') break app.cleanup(rf_in_path) app.cleanup(mask_in_path) iteration += 1 progress.done() # If we've terminated due to hitting the iteration limiter, we still need to copy the output file(s) to the correct location if os.path.exists('response.txt'): app.console('Exited at iteration ' + str(iteration + 1) + ' with ' + str(sf_voxel_count) + ' SF voxels due to unchanged RF coefficients') else: app.console('Exited after maximum ' + str(app.ARGS.max_iters) + ' iterations with ' + str(sf_voxel_count) + ' SF voxels') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.from_user(app.ARGS.output, False)) if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input, False), force=app.FORCE_OVERWRITE)
def execute(): #pylint: disable=unused-variable lmax_option = '' if app.ARGS.lmax: lmax_option = ' -lmax ' + app.ARGS.lmax if app.ARGS.max_iters < 2: raise MRtrixError('Number of iterations must be at least 2') progress = app.ProgressBar('Optimising') iter_voxels = app.ARGS.iter_voxels if iter_voxels == 0: iter_voxels = 10 * app.ARGS.number elif iter_voxels < app.ARGS.number: raise MRtrixError( 'Number of selected voxels (-iter_voxels) must be greater than number of voxels desired (-number)' ) iteration = 0 while iteration < app.ARGS.max_iters: prefix = 'iter' + str(iteration) + '_' if iteration == 0: rf_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' init_rf = '1 -1 1' with open(rf_in_path, 'w') as init_rf_file: init_rf_file.write(init_rf) iter_lmax_option = ' -lmax 4' else: rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF_dilated.mif' iter_lmax_option = lmax_option # Run CSD run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and direction of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') app.cleanup(prefix + 'FOD.mif') if iteration: app.cleanup(mask_in_path) run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif none ' + prefix + 'amps.mif -number 2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') app.cleanup(prefix + 'amps.mif') run.command('fixel2peaks ' + prefix + 'fixel/directions.mif ' + prefix + 'first_dir.mif -number 1') app.cleanup(prefix + 'fixel') # Calculate the 'cost function' Donald derived for selecting single-fibre voxels # https://github.com/MRtrix3/mrtrix3/pull/426 # sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2 run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div -sub 2 -pow -mult ' + prefix + 'CF.mif') app.cleanup(prefix + 'first_peaks.mif') app.cleanup(prefix + 'second_peaks.mif') voxel_count = image.statistics(prefix + 'CF.mif').count # Select the top-ranked voxels run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(min([app.ARGS.number, voxel_count])) + ' ' + prefix + 'SF.mif') # Generate a new response function based on this selection run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option) app.cleanup(prefix + 'first_dir.mif') new_rf = matrix.load_vector(prefix + 'RF.txt') progress.increment('Optimising (' + str(iteration + 1) + ' iterations, RF: [ ' + ', '.join('{:.3f}'.format(n) for n in new_rf) + '] )') # Should we terminate? if iteration > 0: run.command('mrcalc ' + prefix + 'SF.mif iter' + str(iteration - 1) + '_SF.mif -sub ' + prefix + 'SF_diff.mif') app.cleanup('iter' + str(iteration - 1) + '_SF.mif') max_diff = image.statistics(prefix + 'SF_diff.mif').max app.cleanup(prefix + 'SF_diff.mif') if not max_diff: app.cleanup(prefix + 'CF.mif') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif') break # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask); # these are the voxels that will be re-tested in the next iteration run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(min([iter_voxels, voxel_count])) + ' - | maskfilter - dilate - -npass ' + str(app.ARGS.dilate) + ' | mrcalc mask.mif - -mult ' + prefix + 'SF_dilated.mif') app.cleanup(prefix + 'CF.mif') iteration += 1 progress.done() # If terminating due to running out of iterations, still need to put the results in the appropriate location if os.path.exists('response.txt'): app.console( 'Convergence of SF voxel selection detected at iteration ' + str(iteration + 1)) else: app.console('Exiting after maximum ' + str(app.ARGS.max_iters) + ' iterations') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.move, 'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.from_user(app.ARGS.output, False)) if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input, False), force=app.FORCE_OVERWRITE)
def execute(): #pylint: disable=unused-variable bzero_threshold = float( CONFIG['BZeroThreshold']) if 'BZeroThreshold' in CONFIG else 10.0 # CHECK INPUTS AND OPTIONS app.console('-------') # Get b-values and number of volumes per b-value. bvalues = [ int(round(float(x))) for x in image.mrinfo('dwi.mif', 'shell_bvalues').split() ] bvolumes = [int(x) for x in image.mrinfo('dwi.mif', 'shell_sizes').split()] app.console( str(len(bvalues)) + ' unique b-value(s) detected: ' + ','.join(map(str, bvalues)) + ' with ' + ','.join(map(str, bvolumes)) + ' volumes') if len(bvalues) < 2: raise MRtrixError('Need at least 2 unique b-values (including b=0).') bvalues_option = ' -shells ' + ','.join(map(str, bvalues)) # Get lmax information (if provided). sfwm_lmax = [] if app.ARGS.lmax: sfwm_lmax = [int(x.strip()) for x in app.ARGS.lmax.split(',')] if not len(sfwm_lmax) == len(bvalues): raise MRtrixError('Number of lmax\'s (' + str(len(sfwm_lmax)) + ', as supplied to the -lmax option: ' + ','.join(map(str, sfwm_lmax)) + ') does not match number of unique b-values.') for sfl in sfwm_lmax: if sfl % 2: raise MRtrixError( 'Values supplied to the -lmax option must be even.') if sfl < 0: raise MRtrixError( 'Values supplied to the -lmax option must be non-negative.' ) sfwm_lmax_option = '' if sfwm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str, sfwm_lmax)) # PREPARATION app.console('-------') app.console('Preparation:') # Erode (brain) mask. if app.ARGS.erode > 0: app.console('* Eroding brain mask by ' + str(app.ARGS.erode) + ' pass(es)...') run.command('maskfilter mask.mif erode eroded_mask.mif -npass ' + str(app.ARGS.erode), show=False) else: app.console('Not eroding brain mask.') run.command('mrconvert mask.mif eroded_mask.mif -datatype bit', show=False) statmaskcount = image.statistics('mask.mif', mask='mask.mif').count statemaskcount = image.statistics('eroded_mask.mif', mask='eroded_mask.mif').count app.console(' [ mask: ' + str(statmaskcount) + ' -> ' + str(statemaskcount) + ' ]') # Get volumes, compute mean signal and SDM per b-value; compute overall SDM; get rid of erroneous values. app.console('* Computing signal decay metric (SDM):') totvolumes = 0 fullsdmcmd = 'mrcalc' errcmd = 'mrcalc' zeropath = 'mean_b' + str(bvalues[0]) + '.mif' for ibv, bval in enumerate(bvalues): app.console(' * b=' + str(bval) + '...') meanpath = 'mean_b' + str(bval) + '.mif' run.command('dwiextract dwi.mif -shells ' + str(bval) + ' - | mrcalc - 0 -max - | mrmath - mean ' + meanpath + ' -axis 3', show=False) errpath = 'err_b' + str(bval) + '.mif' run.command('mrcalc ' + meanpath + ' -finite ' + meanpath + ' 0 -if 0 -le ' + errpath + ' -datatype bit', show=False) errcmd += ' ' + errpath if ibv > 0: errcmd += ' -add' sdmpath = 'sdm_b' + str(bval) + '.mif' run.command('mrcalc ' + zeropath + ' ' + meanpath + ' -divide -log ' + sdmpath, show=False) totvolumes += bvolumes[ibv] fullsdmcmd += ' ' + sdmpath + ' ' + str(bvolumes[ibv]) + ' -mult' if ibv > 1: fullsdmcmd += ' -add' fullsdmcmd += ' ' + str(totvolumes) + ' -divide full_sdm.mif' run.command(fullsdmcmd, show=False) app.console('* Removing erroneous voxels from mask and correcting SDM...') run.command( 'mrcalc full_sdm.mif -finite full_sdm.mif 0 -if 0 -le err_sdm.mif -datatype bit', show=False) errcmd += ' err_sdm.mif -add 0 eroded_mask.mif -if safe_mask.mif -datatype bit' run.command(errcmd, show=False) run.command('mrcalc safe_mask.mif full_sdm.mif 0 -if 10 -min safe_sdm.mif', show=False) statsmaskcount = image.statistics('safe_mask.mif', mask='safe_mask.mif').count app.console(' [ mask: ' + str(statemaskcount) + ' -> ' + str(statsmaskcount) + ' ]') # CRUDE SEGMENTATION app.console('-------') app.console('Crude segmentation:') # Compute FA and principal eigenvectors; crude WM versus GM-CSF separation based on FA. app.console('* Crude WM versus GM-CSF separation (at FA=' + str(app.ARGS.fa) + ')...') run.command( 'dwi2tensor dwi.mif - -mask safe_mask.mif | tensor2metric - -fa safe_fa.mif -vector safe_vecs.mif -modulate none -mask safe_mask.mif', show=False) run.command('mrcalc safe_mask.mif safe_fa.mif 0 -if ' + str(app.ARGS.fa) + ' -gt crude_wm.mif -datatype bit', show=False) run.command( 'mrcalc crude_wm.mif 0 safe_mask.mif -if _crudenonwm.mif -datatype bit', show=False) statcrudewmcount = image.statistics('crude_wm.mif', mask='crude_wm.mif').count statcrudenonwmcount = image.statistics('_crudenonwm.mif', mask='_crudenonwm.mif').count app.console(' [ ' + str(statsmaskcount) + ' -> ' + str(statcrudewmcount) + ' (WM) & ' + str(statcrudenonwmcount) + ' (GM-CSF) ]') # Crude GM versus CSF separation based on SDM. app.console('* Crude GM versus CSF separation...') crudenonwmmedian = image.statistics('safe_sdm.mif', mask='_crudenonwm.mif').median run.command( 'mrcalc _crudenonwm.mif safe_sdm.mif ' + str(crudenonwmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudenonwm.mif | mrcalc _crudenonwm.mif - 0 -if crude_csf.mif -datatype bit', show=False) run.command( 'mrcalc crude_csf.mif 0 _crudenonwm.mif -if crude_gm.mif -datatype bit', show=False) statcrudegmcount = image.statistics('crude_gm.mif', mask='crude_gm.mif').count statcrudecsfcount = image.statistics('crude_csf.mif', mask='crude_csf.mif').count app.console(' [ ' + str(statcrudenonwmcount) + ' -> ' + str(statcrudegmcount) + ' (GM) & ' + str(statcrudecsfcount) + ' (CSF) ]') # REFINED SEGMENTATION app.console('-------') app.console('Refined segmentation:') # Refine WM: remove high SDM outliers. app.console('* Refining WM...') crudewmmedian = image.statistics('safe_sdm.mif', mask='crude_wm.mif').median run.command('mrcalc crude_wm.mif safe_sdm.mif ' + str(crudewmmedian) + ' -subtract -abs 0 -if _crudewm_sdmad.mif', show=False) crudewmmad = image.statistics('_crudewm_sdmad.mif', mask='crude_wm.mif').median crudewmoutlthresh = crudewmmedian + (1.4826 * crudewmmad * 2.0) run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmoutlthresh) + ' -gt _crudewmoutliers.mif -datatype bit', show=False) run.command( 'mrcalc _crudewmoutliers.mif 0 crude_wm.mif -if refined_wm.mif -datatype bit', show=False) statrefwmcount = image.statistics('refined_wm.mif', mask='refined_wm.mif').count app.console(' [ WM: ' + str(statcrudewmcount) + ' -> ' + str(statrefwmcount) + ' ]') # Refine GM: separate safer GM from partial volumed voxels. app.console('* Refining GM...') crudegmmedian = image.statistics('safe_sdm.mif', mask='crude_gm.mif').median run.command('mrcalc crude_gm.mif safe_sdm.mif 0 -if ' + str(crudegmmedian) + ' -gt _crudegmhigh.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmhigh.mif 0 crude_gm.mif -if _crudegmlow.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmhigh.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudegmhigh.mif -invert | mrcalc _crudegmhigh.mif - 0 -if _crudegmhighselect.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmlow.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract -neg 0 -if - | mrthreshold - - -mask _crudegmlow.mif -invert | mrcalc _crudegmlow.mif - 0 -if _crudegmlowselect.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmhighselect.mif 1 _crudegmlowselect.mif -if refined_gm.mif -datatype bit', show=False) statrefgmcount = image.statistics('refined_gm.mif', mask='refined_gm.mif').count app.console(' [ GM: ' + str(statcrudegmcount) + ' -> ' + str(statrefgmcount) + ' ]') # Refine CSF: recover lost CSF from crude WM SDM outliers, separate safer CSF from partial volumed voxels. app.console('* Refining CSF...') crudecsfmin = image.statistics('safe_sdm.mif', mask='crude_csf.mif').min run.command('mrcalc _crudewmoutliers.mif safe_sdm.mif 0 -if ' + str(crudecsfmin) + ' -gt 1 crude_csf.mif -if _crudecsfextra.mif -datatype bit', show=False) run.command( 'mrcalc _crudecsfextra.mif safe_sdm.mif ' + str(crudecsfmin) + ' -subtract 0 -if - | mrthreshold - - -mask _crudecsfextra.mif | mrcalc _crudecsfextra.mif - 0 -if refined_csf.mif -datatype bit', show=False) statrefcsfcount = image.statistics('refined_csf.mif', mask='refined_csf.mif').count app.console(' [ CSF: ' + str(statcrudecsfcount) + ' -> ' + str(statrefcsfcount) + ' ]') # FINAL VOXEL SELECTION AND RESPONSE FUNCTION ESTIMATION app.console('-------') app.console('Final voxel selection and response function estimation:') # Get final voxels for CSF response function estimation from refined CSF. app.console('* CSF:') app.console(' * Selecting final voxels (' + str(app.ARGS.csf) + '% of refined CSF)...') voxcsfcount = int(round(statrefcsfcount * app.ARGS.csf / 100.0)) run.command( 'mrcalc refined_csf.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxcsfcount) + ' -ignorezero | mrcalc refined_csf.mif - 0 -if - -datatype bit | mrconvert - voxels_csf.mif -axes 0,1,2', show=False) statvoxcsfcount = image.statistics('voxels_csf.mif', mask='voxels_csf.mif').count app.console(' [ CSF: ' + str(statrefcsfcount) + ' -> ' + str(statvoxcsfcount) + ' ]') # Estimate CSF response function app.console(' * Estimating response function...') run.command( 'amp2response dwi.mif voxels_csf.mif safe_vecs.mif response_csf.txt' + bvalues_option + ' -isotropic', show=False) # Get final voxels for GM response function estimation from refined GM. app.console('* GM:') app.console(' * Selecting final voxels (' + str(app.ARGS.gm) + '% of refined GM)...') voxgmcount = int(round(statrefgmcount * app.ARGS.gm / 100.0)) refgmmedian = image.statistics('safe_sdm.mif', mask='refined_gm.mif').median run.command( 'mrcalc refined_gm.mif safe_sdm.mif ' + str(refgmmedian) + ' -subtract -abs 1 -add 0 -if - | mrthreshold - - -bottom ' + str(voxgmcount) + ' -ignorezero | mrcalc refined_gm.mif - 0 -if - -datatype bit | mrconvert - voxels_gm.mif -axes 0,1,2', show=False) statvoxgmcount = image.statistics('voxels_gm.mif', mask='voxels_gm.mif').count app.console(' [ GM: ' + str(statrefgmcount) + ' -> ' + str(statvoxgmcount) + ' ]') # Estimate GM response function app.console(' * Estimating response function...') run.command( 'amp2response dwi.mif voxels_gm.mif safe_vecs.mif response_gm.txt' + bvalues_option + ' -isotropic', show=False) # Get final voxels for single-fibre WM response function estimation from refined WM. app.console('* Single-fibre WM:') app.console(' * Selecting final voxels' + ('' if app.ARGS.wm_algo == 'tax' else (' (' + str(app.ARGS.sfwm) + '% of refined WM)')) + '...') voxsfwmcount = int(round(statrefwmcount * app.ARGS.sfwm / 100.0)) if app.ARGS.wm_algo: recursive_cleanup_option = '' if not app.DO_CLEANUP: recursive_cleanup_option = ' -nocleanup' app.console(' Selecting WM single-fibre voxels using \'' + app.ARGS.wm_algo + '\' algorithm') if app.ARGS.wm_algo == 'tax' and app.ARGS.sfwm != 0.5: app.warn( 'Single-fibre WM response function selection algorithm "tax" will not honour requested WM voxel percentage' ) run.command( 'dwi2response ' + app.ARGS.wm_algo + ' dwi.mif _respsfwmss.txt -mask refined_wm.mif -voxels voxels_sfwm.mif' + ('' if app.ARGS.wm_algo == 'tax' else (' -number ' + str(voxsfwmcount))) + ' -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option, show=False) else: app.console( ' Selecting WM single-fibre voxels using built-in (Dhollander et al., 2019) algorithm' ) run.command('mrmath dwi.mif mean mean_sig.mif -axis 3', show=False) refwmcoef = image.statistics('mean_sig.mif', mask='refined_wm.mif').median * math.sqrt( 4.0 * math.pi) if sfwm_lmax: isiso = [lm == 0 for lm in sfwm_lmax] else: isiso = [bv < bzero_threshold for bv in bvalues] with open('ewmrf.txt', 'w') as ewr: for iis in isiso: if iis: ewr.write("%s 0 0 0\n" % refwmcoef) else: ewr.write("%s -%s %s -%s\n" % (refwmcoef, refwmcoef, refwmcoef, refwmcoef)) run.command( 'dwi2fod msmt_csd dwi.mif ewmrf.txt abs_ewm2.mif response_csf.txt abs_csf2.mif -mask refined_wm.mif -lmax 2,0' + bvalues_option, show=False) run.command( 'mrconvert abs_ewm2.mif - -coord 3 0 | mrcalc - abs_csf2.mif -add abs_sum2.mif', show=False) run.command( 'sh2peaks abs_ewm2.mif - -num 1 -mask refined_wm.mif | peaks2amp - - | mrcalc - abs_sum2.mif -divide - | mrconvert - metric_sfwm2.mif -coord 3 0 -axes 0,1,2', show=False) run.command( 'mrcalc refined_wm.mif metric_sfwm2.mif 0 -if - | mrthreshold - - -top ' + str(voxsfwmcount * 2) + ' -ignorezero | mrcalc refined_wm.mif - 0 -if - -datatype bit | mrconvert - refined_sfwm.mif -axes 0,1,2', show=False) run.command( 'dwi2fod msmt_csd dwi.mif ewmrf.txt abs_ewm6.mif response_csf.txt abs_csf6.mif -mask refined_sfwm.mif -lmax 6,0' + bvalues_option, show=False) run.command( 'mrconvert abs_ewm6.mif - -coord 3 0 | mrcalc - abs_csf6.mif -add abs_sum6.mif', show=False) run.command( 'sh2peaks abs_ewm6.mif - -num 1 -mask refined_sfwm.mif | peaks2amp - - | mrcalc - abs_sum6.mif -divide - | mrconvert - metric_sfwm6.mif -coord 3 0 -axes 0,1,2', show=False) run.command( 'mrcalc refined_sfwm.mif metric_sfwm6.mif 0 -if - | mrthreshold - - -top ' + str(voxsfwmcount) + ' -ignorezero | mrcalc refined_sfwm.mif - 0 -if - -datatype bit | mrconvert - voxels_sfwm.mif -axes 0,1,2', show=False) statvoxsfwmcount = image.statistics('voxels_sfwm.mif', mask='voxels_sfwm.mif').count app.console(' [ WM: ' + str(statrefwmcount) + ' -> ' + str(statvoxsfwmcount) + ' (single-fibre) ]') # Estimate SF WM response function app.console(' * Estimating response function...') run.command( 'amp2response dwi.mif voxels_sfwm.mif safe_vecs.mif response_sfwm.txt' + bvalues_option + sfwm_lmax_option, show=False) # OUTPUT AND SUMMARY app.console('-------') app.console('Generating outputs...') # Generate 4D binary images with voxel selections at major stages in algorithm (RGB: WM=blue, GM=green, CSF=red). run.command( 'mrcat crude_csf.mif crude_gm.mif crude_wm.mif check_crude.mif -axis 3', show=False) run.command( 'mrcat refined_csf.mif refined_gm.mif refined_wm.mif check_refined.mif -axis 3', show=False) run.command( 'mrcat voxels_csf.mif voxels_gm.mif voxels_sfwm.mif check_voxels.mif -axis 3', show=False) # Copy results to output files run.function(shutil.copyfile, 'response_sfwm.txt', path.from_user(app.ARGS.out_sfwm, False), show=False) run.function(shutil.copyfile, 'response_gm.txt', path.from_user(app.ARGS.out_gm, False), show=False) run.function(shutil.copyfile, 'response_csf.txt', path.from_user(app.ARGS.out_csf, False), show=False) if app.ARGS.voxels: run.command('mrconvert check_voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input, False), force=app.FORCE_OVERWRITE, show=False) app.console('-------')
def execute(): #pylint: disable=unused-variable # Ideally want to use the oversampling-based regridding of the 5TT image from the SIFT model, not mrtransform # May need to commit 5ttregrid... # Verify input 5tt image verification_text = '' try: verification_text = run.command('5ttcheck 5tt.mif').stderr except run.MRtrixCmdError as except_5ttcheck: verification_text = except_5ttcheck.stderr if 'WARNING' in verification_text or 'ERROR' in verification_text: app.warn('Command 5ttcheck indicates problems with provided input 5TT image \'' + app.ARGS.in_5tt + '\':') for line in verification_text.splitlines(): app.warn(line) app.warn('These may or may not interfere with the dwi2response msmt_5tt script') # Get shell information shells = [ int(round(float(x))) for x in image.mrinfo('dwi.mif', 'shell_bvalues').split() ] if len(shells) < 3: app.warn('Less than three b-values; response functions will not be applicable in resolving three tissues using MSMT-CSD algorithm') # Get lmax information (if provided) wm_lmax = [ ] if app.ARGS.lmax: wm_lmax = [ int(x.strip()) for x in app.ARGS.lmax.split(',') ] if not len(wm_lmax) == len(shells): raise MRtrixError('Number of manually-defined lmax\'s (' + str(len(wm_lmax)) + ') does not match number of b-values (' + str(len(shells)) + ')') for shell_l in wm_lmax: if shell_l % 2: raise MRtrixError('Values for lmax must be even') if shell_l < 0: raise MRtrixError('Values for lmax must be non-negative') run.command('dwi2tensor dwi.mif - -mask mask.mif | tensor2metric - -fa fa.mif -vector vector.mif') if not os.path.exists('dirs.mif'): run.function(shutil.copy, 'vector.mif', 'dirs.mif') run.command('mrtransform 5tt.mif 5tt_regrid.mif -template fa.mif -interp linear') # Basic tissue masks run.command('mrconvert 5tt_regrid.mif - -coord 3 2 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt mask.mif -mult wm_mask.mif') run.command('mrconvert 5tt_regrid.mif - -coord 3 0 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt fa.mif ' + str(app.ARGS.fa) + ' -lt -mult mask.mif -mult gm_mask.mif') run.command('mrconvert 5tt_regrid.mif - -coord 3 3 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt fa.mif ' + str(app.ARGS.fa) + ' -lt -mult mask.mif -mult csf_mask.mif') # Revise WM mask to only include single-fibre voxels recursive_cleanup_option='' if not app.DO_CLEANUP: recursive_cleanup_option = ' -nocleanup' if not app.ARGS.sfwm_fa_threshold: app.console('Selecting WM single-fibre voxels using \'' + app.ARGS.wm_algo + '\' algorithm') run.command('dwi2response ' + app.ARGS.wm_algo + ' dwi.mif wm_ss_response.txt -mask wm_mask.mif -voxels wm_sf_mask.mif -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option) else: app.console('Selecting WM single-fibre voxels using \'fa\' algorithm with a hard FA threshold of ' + str(app.ARGS.sfwm_fa_threshold)) run.command('dwi2response fa dwi.mif wm_ss_response.txt -mask wm_mask.mif -threshold ' + str(app.ARGS.sfwm_fa_threshold) + ' -voxels wm_sf_mask.mif -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option) # Check for empty masks wm_voxels = image.statistics('wm_sf_mask.mif', mask='wm_sf_mask.mif').count gm_voxels = image.statistics('gm_mask.mif', mask='gm_mask.mif').count csf_voxels = image.statistics('csf_mask.mif', mask='csf_mask.mif').count empty_masks = [ ] if not wm_voxels: empty_masks.append('WM') if not gm_voxels: empty_masks.append('GM') if not csf_voxels: empty_masks.append('CSF') if empty_masks: message = ','.join(empty_masks) message += ' tissue mask' if len(empty_masks) > 1: message += 's' message += ' empty; cannot estimate response function' if len(empty_masks) > 1: message += 's' raise MRtrixError(message) # For each of the three tissues, generate a multi-shell response bvalues_option = ' -shells ' + ','.join(map(str,shells)) sfwm_lmax_option = '' if wm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str,wm_lmax)) run.command('amp2response dwi.mif wm_sf_mask.mif dirs.mif wm.txt' + bvalues_option + sfwm_lmax_option) run.command('amp2response dwi.mif gm_mask.mif dirs.mif gm.txt' + bvalues_option + ' -isotropic') run.command('amp2response dwi.mif csf_mask.mif dirs.mif csf.txt' + bvalues_option + ' -isotropic') run.function(shutil.copyfile, 'wm.txt', path.from_user(app.ARGS.out_wm, False)) run.function(shutil.copyfile, 'gm.txt', path.from_user(app.ARGS.out_gm, False)) run.function(shutil.copyfile, 'csf.txt', path.from_user(app.ARGS.out_csf, False)) # Generate output 4D binary image with voxel selections; RGB as in MSMT-CSD paper run.command('mrcat csf_mask.mif gm_mask.mif wm_sf_mask.mif voxels.mif -axis 3') if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input, False), force=app.FORCE_OVERWRITE)