from mrunner.helpers.specification_helper import create_experiments_helper

experiments_list = create_experiments_helper(
    experiment_name='RND toyMR',
    base_config={
        "idx": 0,
        "env_id": "chain_env",
        "env_size": None,
    },
    params_grid={
        "idx": [0],
        "env_size": list(range(
            1,
            30,
        )),
    },
    script='python3 -m run_toy_mr --mrunner --output_dir=./out '
    '--config_file=configs/empty.gin',
    exclude=[
        '.pytest_cache', '.vagrant', '__pycache__', 'checkpoints', 'out',
        'Vagrantfile', 'singularity.def', 'rnd_toyMR_20200417.simg'
    ],
    python_path='alpacka',
    tags=[globals()['script'][:-3]],
    with_neptune=True)
Exemple #2
0
from mrunner.helpers.specification_helper import create_experiments_helper
import os

tags = os.environ["PROJECT_TAG"].split(
    ' ') if "PROJECT_TAG" in os.environ.keys() else []

experiments_list = create_experiments_helper(
    experiment_name='Test',
    base_config={
        # Parameters of dataset:
    },
    params_grid={},
    #project=os.environ["NEPTUNE_PROJECT_NAME"],
    script='./seed_rl/docker/run_remote.sh starcraft vtrace 3',
    exclude=[
        '.pytest_cache', '.git', 'docs', 'data', 'data_out', 'assets', 'out',
        '.vagrant'
    ],
    python_path=':ncc',
    with_mpi=False,
    tags=tags,
    callbacks=[],
    with_neptune=True)
Exemple #3
0
from mrunner.helpers.specification_helper import create_experiments_helper
import os

tags = os.environ["PROJECT_TAG"].split(
    ' ') if "PROJECT_TAG" in os.environ.keys() else []

experiments_list = create_experiments_helper(
    experiment_name='her-mcts',
    base_config={},
    #params_grid={'TestDeterministicMCTSAgent.n_passes': [5, 10, 20, 50]},
    params_grid={},
    script=
    'python3 -m alpacka.runner --mrunner --output_dir=./out --config_file=mcts/mcts.gin',
    exclude=['.git', 'resources'],
    python_path='',
    tags=tags,
    with_neptune=True)
Exemple #4
0
model_params = {
    "learning_rate": 1e-3,
    "prioritized_replay": True,
    "verbose": 1,
}

learn_params = {
    "total_timesteps": int(2e4),
    "log_interval": 1,
}

base_config = {
    **model_params,
    **learn_params,
}

params_grid = {
    "learning_rate": [3e-4, 4e-3],
}

experiments_list = create_experiments_helper(
    experiment_name='lunar lander mrunner test',
    base_config=base_config,
    params_grid=params_grid,
    script=f'python /gcp_tutorial/train_with_mrunner.py',
    exclude=[],
    python_path='',
    tags=['some', 'tags'],
    with_neptune=True,
    env={"GOOGLE_APPLICATION_CREDENTIALS": "google_app_cred.json"})
    'atari_lib.create_atari_environment.game_name': 'Breakout',
    'BASE_PATH': '.',
    'GAME': 'Breakout',
    'RainbowRolloutsAgent.epsilon_decay_period': 25000,
    'RainbowRolloutsAgent.epsilon_rollout_decay_period': 5000000
}

params_grid = {
    'default_rollout_sampler.exponential_coefficient': [
        0.1,
    ],
    'RolloutsRunner.rollout_len': [
        20,
    ],
    'RainbowRolloutsAgent.epsilon_train': [
        0.05,
    ],
    'RainbowRolloutsAgent.epsilon_rollout_train': [
        0.2,
    ]
}
experiments_list = create_experiments_helper(
    experiment_name='Rainbow-short-rollouts',
    project_name=os.environ["PROJECT_QUALIFIED_NAME"],
    script='python dopamine_short_rollouts_mrunner.py',
    python_path='.',
    paths_to_dump='',
    tags=[],
    base_config=base_config,
    params_grid=params_grid)
Exemple #6
0
from mrunner.helpers.specification_helper import create_experiments_helper

experiments_list = create_experiments_helper(
    experiment_name='RND toyMR',
    base_config={"idx": 0},
    params_grid={"idx": [0]},
    script='python3 -m test_mpi.py --mrunner --output_dir=./out '
    '--config_file=configs/test_mpi.gin',
    exclude=[
        '.pytest_cache', '.vagrant', '__pycache__', 'checkpoints', 'out',
        'Vagrantfile', 'singularity.def', 'rnd_toyMR_20200417.simg'
    ],
    python_path='alpacka',
    tags=[globals()['script'][:-3]],
    with_neptune=True)
Exemple #7
0
from mrunner.helpers.specification_helper import create_experiments_helper
import os

tags = os.environ["PROJECT_TAG"].split(' ') if "PROJECT_TAG" in os.environ.keys() else []

experiments_list = create_experiments_helper(
    experiment_name='Test',
    base_config={
        'task_name': None,
        'learning_rate': 0.001,
    },
    #params_grid={},
    params_grid={'task_name': ['MMM2', '3s5z_vs_3s6z', '10m_vs_11m', 'corridor', '2c_vs_64zg'] * 4},
    #project=os.environ["NEPTUNE_PROJECT_NAME"],
    script='./seed_rl/docker/run_remote.sh starcraft vtrace_better 30',
    exclude=['.pytest_cache', '.git', 'docs', 'data', 'data_out', 'assets', 'out', '.vagrant', 'seed_rl/.git'],
    python_path=':ncc',
    with_mpi=False,
    tags=tags,
    callbacks=[],
    with_neptune=True,
    project_name='pmtest/marl-vtrace'
)