Exemple #1
0
    def __init__(self,
                 nodes=None,
                 adducts=None,
                 used_as_adduct=None,
                 feature_id=None):
        if nodes is None:
            nodes = []
        if adducts is None:
            adducts = []
        if used_as_adduct is None:
            used_as_adduct = []
        if feature_id is None:
            feature_id = uid()

        FeatureBase.__init__(self, nodes)
        self._total_intensity = None
        self._mz = None
        self._last_mz = 0.0
        self._times = None
        self._peaks = None
        self._start_time = None
        self._end_time = None
        self.adducts = adducts
        self.used_as_adduct = used_as_adduct
        self.feature_id = feature_id
        self._peak_averager = RunningWeightedAverage()
        if len(self) > 0:
            self._feed_peak_averager()
Exemple #2
0
    def __init__(self, id=None, groups=None):
        self.id = id or uid()
        self.groups = sorted(groups or [], key=lambda x: x.order)
        self.analyzers = []

        for group in self.groups:
            if group.type == 'analyzer':
                self.analyzers.extend(group)
 def __init__(self, time=None, members=None):
     if members is None:
         members = []
     self.time = time
     self.members = members
     self._most_abundant_member = None
     self._mz = 0
     self._recalculate()
     self.node_id = uid()
 def __init__(self, time=None, members=None):
     if members is None:
         members = []
     self.time = time
     self.members = members
     self._most_abundant_member = None
     self._mz = 0
     self._recalculate()
     self.node_id = uid()
Exemple #5
0
    def __init__(self, peak_set, span=None, epsilon=0.02, key=None):
        if span is None:
            span = 0
        if key is None:
            key = uid()
        self.key = key
        self.peak_set = peak_set
        self.span = max(span, self._guess_span())
        self.epsilon = epsilon

        self.indices = None
        self.binned_signal = None
        self.discretize()
    def __init__(self, nodes=None, adducts=None, used_as_adduct=None, feature_id=None):
        if nodes is None:
            nodes = []
        if adducts is None:
            adducts = []
        if used_as_adduct is None:
            used_as_adduct = []
        if feature_id is None:
            feature_id = uid()

        FeatureBase.__init__(self, nodes)
        self._total_intensity = None
        self._mz = None
        self._last_mz = 0.0
        self._times = None
        self._peaks = None
        self._start_time = None
        self._end_time = None
        self.adducts = adducts
        self.used_as_adduct = used_as_adduct
        self.feature_id = feature_id
        self._initialize_averager()
    def __init__(self, nodes=None, adducts=None, used_as_adduct=None, feature_id=None):
        if nodes is None:
            nodes = []
        if adducts is None:
            adducts = []
        if used_as_adduct is None:
            used_as_adduct = []
        if feature_id is None:
            feature_id = uid()

        FeatureBase.__init__(self, nodes)
        self._total_intensity = None
        self._mz = None
        self._last_mz = 0.0
        self._times = None
        self._peaks = None
        self._start_time = None
        self._end_time = None
        self.adducts = adducts
        self.used_as_adduct = used_as_adduct
        self.feature_id = feature_id
        self._peak_averager = RunningWeightedAverage()
        if len(self) > 0:
            self._feed_peak_averager()
 def __init__(self, methods=None, id=None):
     self.methods = methods or []
     self.id = id or uid()
 def __init__(self, methods=None, id=None):
     self.methods = methods or []
     self.id = id or uid()