def __init__(self, nodes=None, adducts=None, used_as_adduct=None, feature_id=None): if nodes is None: nodes = [] if adducts is None: adducts = [] if used_as_adduct is None: used_as_adduct = [] if feature_id is None: feature_id = uid() FeatureBase.__init__(self, nodes) self._total_intensity = None self._mz = None self._last_mz = 0.0 self._times = None self._peaks = None self._start_time = None self._end_time = None self.adducts = adducts self.used_as_adduct = used_as_adduct self.feature_id = feature_id self._peak_averager = RunningWeightedAverage() if len(self) > 0: self._feed_peak_averager()
def __init__(self, id=None, groups=None): self.id = id or uid() self.groups = sorted(groups or [], key=lambda x: x.order) self.analyzers = [] for group in self.groups: if group.type == 'analyzer': self.analyzers.extend(group)
def __init__(self, time=None, members=None): if members is None: members = [] self.time = time self.members = members self._most_abundant_member = None self._mz = 0 self._recalculate() self.node_id = uid()
def __init__(self, peak_set, span=None, epsilon=0.02, key=None): if span is None: span = 0 if key is None: key = uid() self.key = key self.peak_set = peak_set self.span = max(span, self._guess_span()) self.epsilon = epsilon self.indices = None self.binned_signal = None self.discretize()
def __init__(self, nodes=None, adducts=None, used_as_adduct=None, feature_id=None): if nodes is None: nodes = [] if adducts is None: adducts = [] if used_as_adduct is None: used_as_adduct = [] if feature_id is None: feature_id = uid() FeatureBase.__init__(self, nodes) self._total_intensity = None self._mz = None self._last_mz = 0.0 self._times = None self._peaks = None self._start_time = None self._end_time = None self.adducts = adducts self.used_as_adduct = used_as_adduct self.feature_id = feature_id self._initialize_averager()
def __init__(self, methods=None, id=None): self.methods = methods or [] self.id = id or uid()