def convert(self, fitted=True, deconvoluted=True): precursor_information = self.precursor_information.convert( ) if self.precursor_information is not None else None session = object_session(self) conn = session.connection() if fitted: q = conn.execute(select([FittedPeak.__table__]).where( FittedPeak.__table__.c.scan_id == self.id)).fetchall() peak_set_items = list( map(make_memory_fitted_peak, q)) peak_set = PeakSet(peak_set_items) peak_set._index() peak_index = PeakIndex(np.array([], dtype=np.float64), np.array( [], dtype=np.float64), peak_set) else: peak_index = PeakIndex(np.array([], dtype=np.float64), np.array( [], dtype=np.float64), PeakSet([])) if deconvoluted: q = conn.execute(select([DeconvolutedPeak.__table__]).where( DeconvolutedPeak.__table__.c.scan_id == self.id)).fetchall() deconvoluted_peak_set_items = list( map(make_memory_deconvoluted_peak, q)) deconvoluted_peak_set = DeconvolutedPeakSet( deconvoluted_peak_set_items) deconvoluted_peak_set._reindex() else: deconvoluted_peak_set = DeconvolutedPeakSet([]) info = self.info or {} scan = ProcessedScan( self.scan_id, self.title, precursor_information, int(self.ms_level), float(self.scan_time), self.index, peak_index, deconvoluted_peak_set, activation=info.get('activation')) return scan
def make_peak_index(fitted_peaks): ps = PeakSet(fitted_peaks) ps._index() return PeakIndex(np.array([], dtype=float), np.array([], dtype=float), ps)
def make_peak_index(fitted_peaks): ps = PeakSet(fitted_peaks) ps._index() return ps