Exemple #1
0
    def convert(self, fitted=True, deconvoluted=True):
        precursor_information = self.precursor_information.convert(
        ) if self.precursor_information is not None else None

        session = object_session(self)
        conn = session.connection()

        if fitted:
            q = conn.execute(select([FittedPeak.__table__]).where(
                FittedPeak.__table__.c.scan_id == self.id)).fetchall()

            peak_set_items = list(
                map(make_memory_fitted_peak, q))

            peak_set = PeakSet(peak_set_items)
            peak_set._index()
            peak_index = PeakIndex(np.array([], dtype=np.float64), np.array(
                [], dtype=np.float64), peak_set)
        else:
            peak_index = PeakIndex(np.array([], dtype=np.float64), np.array(
                [], dtype=np.float64), PeakSet([]))

        if deconvoluted:
            q = conn.execute(select([DeconvolutedPeak.__table__]).where(
                DeconvolutedPeak.__table__.c.scan_id == self.id)).fetchall()

            deconvoluted_peak_set_items = list(
                map(make_memory_deconvoluted_peak, q))

            deconvoluted_peak_set = DeconvolutedPeakSet(
                deconvoluted_peak_set_items)
            deconvoluted_peak_set._reindex()
        else:
            deconvoluted_peak_set = DeconvolutedPeakSet([])

        info = self.info or {}

        scan = ProcessedScan(
            self.scan_id, self.title, precursor_information, int(self.ms_level),
            float(self.scan_time), self.index, peak_index, deconvoluted_peak_set,
            activation=info.get('activation'))
        return scan
def make_peak_index(fitted_peaks):
    ps = PeakSet(fitted_peaks)
    ps._index()
    return PeakIndex(np.array([], dtype=float), np.array([], dtype=float), ps)
Exemple #3
0
def make_peak_index(fitted_peaks):
    ps = PeakSet(fitted_peaks)
    ps._index()
    return ps
def make_peak_index(fitted_peaks):
    ps = PeakSet(fitted_peaks)
    ps._index()
    return PeakIndex(np.array([], dtype=float), np.array([], dtype=float), ps)