def test_add(): channel = grpc.insecure_channel('localhost:5500') stub = ms_service_pb2_grpc.MSServiceStub(channel) request = ms_service_pb2.PredictRequest() x = request.data.add() x.tensor_shape.dims.extend([4]) x.tensor_type = ms_service_pb2.MS_FLOAT32 x.data = (np.ones([4]).astype(np.float32)).tobytes() y = request.data.add() y.tensor_shape.dims.extend([4]) y.tensor_type = ms_service_pb2.MS_FLOAT32 y.data = (np.ones([4]).astype(np.float32)).tobytes() result = stub.Predict(request) result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape( result.result[0].tensor_shape.dims) print("ms client received: ") print(result_np) net = AddNet() net_out = net(Tensor(np.ones([4]).astype(np.float32)), Tensor(np.ones([4]).astype(np.float32))) print("add net out: ") print(net_out) assert np.allclose(net_out.asnumpy(), result_np, 0.001, 0.001, equal_nan=True)
def generate(s='', data_type=0): """generate""" if len(sys.argv) > 2: sys.exit("input error") channel_str = "" if len(sys.argv) == 2: split_args = sys.argv[1].split('=') if len(split_args) > 1: channel_str = split_args[1] else: channel_str = 'localhost:5500' else: channel_str = 'localhost:5500' serving_channel = grpc.insecure_channel(channel_str) stub_func = ms_service_pb2_grpc.MSServiceStub(serving_channel) request_module = ms_service_pb2.PredictRequest() _target_ids = np.ones(shape=(1, 128)) _segment_ids = np.ones(shape=(1, 128)) pad_mask = np.ones(shape=(1, 128)) request_module, request_input_ids, request_segment_ids, request_pad_mask = input_construction(\ request_module, _target_ids, _segment_ids, pad_mask) if data_type in [0, 1]: poetry = generate_random_poetry(s, stub_func, request_module, request_input_ids,\ request_segment_ids, request_pad_mask) else: poetry = generate_hidden(s, stub_func, request_module, request_input_ids, request_segment_ids, request_pad_mask) print(poetry) return poetry
def test_bert(): MAX_MESSAGE_LENGTH = 0x7fffffff input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) segment_ids = np.zeros((2, 32), dtype=np.int32) input_mask = np.zeros((2, 32), dtype=np.int32) channel = grpc.insecure_channel( 'localhost:5500', options=[('grpc.max_send_message_length', MAX_MESSAGE_LENGTH), ('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH)]) stub = ms_service_pb2_grpc.MSServiceStub(channel) request = ms_service_pb2.PredictRequest() x = request.data.add() x.tensor_shape.dims.extend([2, 32]) x.tensor_type = ms_service_pb2.MS_INT32 x.data = input_ids.tobytes() y = request.data.add() y.tensor_shape.dims.extend([2, 32]) y.tensor_type = ms_service_pb2.MS_INT32 y.data = segment_ids.tobytes() z = request.data.add() z.tensor_shape.dims.extend([2, 32]) z.tensor_type = ms_service_pb2.MS_INT32 z.data = input_mask.tobytes() result = stub.Predict(request) result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape( result.result[0].tensor_shape.dims) print("ms client received: ") print(result_np) net = BertModel(bert_net_cfg, False) bert_out = net(Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask)) print("bert out: ") print(bert_out) bert_out_size = len(bert_out) for i in range(bert_out_size): result_np = np.frombuffer(result.result[i].data, dtype=np.float32).reshape( result.result[i].tensor_shape.dims) logger.info("i:{}, result_np:{}, bert_out:{}".format( i, result.result[i].tensor_shape.dims, bert_out[i].asnumpy().shape)) assert np.allclose(bert_out[i].asnumpy(), result_np, 0.001, 0.001, equal_nan=True)
def run(): channel = grpc.insecure_channel('localhost:50051') stub = ms_service_pb2_grpc.MSServiceStub(channel) # request = ms_service_pb2.EvalRequest() # request.name = 'haha' # response = stub.Eval(request) # print("ms client received: " + response.message) request = ms_service_pb2.PredictRequest() request.data.tensor_shape.dims.extend([32, 1, 32, 32]) request.data.tensor_type = ms_service_pb2.MS_FLOAT32 request.data.data = (np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01).tobytes() request.label.tensor_shape.dims.extend([32]) request.label.tensor_type = ms_service_pb2.MS_INT32 request.label.data = np.ones([32]).astype(np.int32).tobytes() result = stub.Test(request) #result_np = np.frombuffer(result.result.data, dtype=np.float32).reshape(result.result.tensor_shape.dims) print("ms client test call received: ")
def run(): channel = grpc.insecure_channel('localhost:5500') stub = ms_service_pb2_grpc.MSServiceStub(channel) request = ms_service_pb2.PredictRequest() x = request.data.add() x.tensor_shape.dims.extend([4]) x.tensor_type = ms_service_pb2.MS_FLOAT32 x.data = (np.ones([4]).astype(np.float32)).tobytes() y = request.data.add() y.tensor_shape.dims.extend([4]) y.tensor_type = ms_service_pb2.MS_FLOAT32 y.data = (np.ones([4]).astype(np.float32)).tobytes() result = stub.Predict(request) print(result) result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape( result.result[0].tensor_shape.dims) print("ms client received: ") print(result_np)
def run(): if len(sys.argv) > 2: sys.exit("input error") channel_str = "" if len(sys.argv) == 2: split_args = sys.argv[1].split('=') if len(split_args) > 1: channel_str = split_args[1] else: channel_str = 'localhost:5500' else: channel_str = 'localhost:5500' channel = grpc.insecure_channel(channel_str) stub = ms_service_pb2_grpc.MSServiceStub(channel) request = ms_service_pb2.PredictRequest() x = request.data.add() x.tensor_shape.dims.extend([4]) x.tensor_type = ms_service_pb2.MS_FLOAT32 x.data = (np.ones([4]).astype(np.float32)).tobytes() y = request.data.add() y.tensor_shape.dims.extend([4]) y.tensor_type = ms_service_pb2.MS_FLOAT32 y.data = (np.ones([4]).astype(np.float32)).tobytes() try: result = stub.Predict(request) print(result) result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape( result.result[0].tensor_shape.dims) print("ms client received: ") print(result_np) except grpc.RpcError as e: print(e.details()) status_code = e.code() print(status_code.name) print(status_code.value)
def test_bert(): MAX_MESSAGE_LENGTH = 0x7fffffff input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) segment_ids = np.zeros((2, 32), dtype=np.int32) input_mask = np.zeros((2, 32), dtype=np.int32) # grpc visit channel = grpc.insecure_channel( 'localhost:5500', options=[('grpc.max_send_message_length', MAX_MESSAGE_LENGTH), ('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH)]) stub = ms_service_pb2_grpc.MSServiceStub(channel) request = ms_service_pb2.PredictRequest() x = request.data.add() x.tensor_shape.dims.extend([2, 32]) x.tensor_type = ms_service_pb2.MS_INT32 x.data = input_ids.tobytes() y = request.data.add() y.tensor_shape.dims.extend([2, 32]) y.tensor_type = ms_service_pb2.MS_INT32 y.data = segment_ids.tobytes() z = request.data.add() z.tensor_shape.dims.extend([2, 32]) z.tensor_type = ms_service_pb2.MS_INT32 z.data = input_mask.tobytes() result = stub.Predict(request) grpc_result = np.frombuffer(result.result[0].data, dtype=np.float32).reshape( result.result[0].tensor_shape.dims) print("ms grpc client received: ") print(grpc_result) # ms result net = BertModel(bert_net_cfg, False) bert_out = net(Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask)) print("bert out: ") print(bert_out[0]) bert_out_size = len(bert_out) # compare grpc result for i in range(bert_out_size): grpc_result = np.frombuffer(result.result[i].data, dtype=np.float32).reshape( result.result[i].tensor_shape.dims) logger.info("i:{}, grpc_result:{}, bert_out:{}".format( i, result.result[i].tensor_shape.dims, bert_out[i].asnumpy().shape)) assert np.allclose(bert_out[i].asnumpy(), grpc_result, 0.001, 0.001, equal_nan=True) # http visit data = { "tensor": [input_ids.tolist(), segment_ids.tolist(), input_mask.tolist()] } url = "http://127.0.0.1:5501" input_json = json.dumps(data) headers = {'Content-type': 'application/json'} response = requests.post(url, data=input_json, headers=headers) result = response.text result = result.replace('\r', '\\r').replace('\n', '\\n') result_json = json.loads(result, strict=False) http_result = np.array(result_json['tensor']) print("ms http client received: ") print(http_result[0][:200]) # compare http result for i in range(bert_out_size): logger.info("i:{}, http_result:{}, bert_out:{}".format( i, np.shape(http_result[i]), bert_out[i].asnumpy().shape)) assert np.allclose(bert_out[i].asnumpy(), http_result[i], 0.001, 0.001, equal_nan=True)