Exemple #1
0
def get_neuronal_enrichment(df):
    clusters = df['kmeans_cluster_name'].unique()

    dfl = []
    for cl in clusters:
        dfc = df[df['kmeans_cluster_name'] == cl].copy()
        dfe = ai.get_enrichment(dfc.index.tolist(),
                                'neuronal_gene_set_library')
        dfe2 = dfe[dfe['Adjusted P-value'] < 0.2].copy()
        dfe2['cluster_name'] = [cl] * len(dfe2)
        dfl.append(dfe2)
    dfn = pd.concat(dfl)
    dfp = dfn.pivot(index='Term',
                    columns='cluster_name',
                    values='Adjusted P-value')
    return dfp
Exemple #2
0
def get_cmap_sig(gene_list):
    genes = [x for x in gene_list if x is not None]
    library = 'LINCS_L1000_Chem_Pert_down'
    dfe = ai.get_enrichment(genes, library)
    dfe = dfe[dfe['Adjusted P-value'] < 0.2]
    return dfe
def get_delta_enrichment(df, cond='mev_delta', delta_thresh=2):
    df2 = df[df[cond] > delta_thresh].copy()
    genes = df2.index.tolist()
    dfe = ai.get_enrichment(genes, 'neuronal_gene_set_library')
    return dfe
Exemple #4
0
def get_cmap_sig(gene_list):
    genes = [x for x in gene_list if x is not None]
    library = 'LINCS_L1000_Chem_Pert_down'
    dfe = ai.get_enrichment(genes, library)
    dfe = dfe[dfe['Adjusted P-value'] < 0.2]
    return dfe