Exemple #1
0
def test_hessian_2():
    n = 3
    seqs = [[
        1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2,
        2, 1, 1, 1, 1, 2, 3, 3, 3, 3
    ]]

    model = ContinuousTimeMSM().fit(seqs)
    print(model.timescales_)
    print(model.uncertainty_timescales())
    theta = model.theta_
    C = model.countsmat_
    print(C)

    C_flat = (C + C.T)[np.triu_indices_from(C, k=1)]
    print(C_flat)
    print('theta', theta, '\n')
    inds = np.where(theta != 0)[0]

    hessian1 = _ratematrix.hessian(theta, C, inds=inds)
    hessian2 = nd.Jacobian(lambda x: _ratematrix.loglikelihood(x, C)[1])(theta)
    hessian3 = nd.Hessian(lambda x: _ratematrix.loglikelihood(x, C)[0])(theta)

    np.set_printoptions(precision=3)

    # H1 = hessian1[np.ix_(active, active)]
    # H2 = hessian2[np.ix_(active, active)]
    # H3 = hessian2[np.ix_(active, active)]

    print(hessian1, '\n')
    print(hessian2, '\n')
    # print(hessian3)
    print('\n')

    info1 = np.zeros((len(theta), len(theta)))
    info2 = np.zeros((len(theta), len(theta)))
    info1[np.ix_(inds, inds)] = scipy.linalg.pinv(-hessian1)
    info2[np.ix_(inds,
                 inds)] = scipy.linalg.pinv(-hessian2[np.ix_(inds, inds)])

    print('Inverse Hessian')
    print(info1)
    print(info2)
    # print(scipy.linalg.pinv(hessian2))
    # print(scipy.linalg.pinv(hessian1)[np.ix_(last, last)])
    # print(scipy.linalg.pinv(hessian2)[np.ix_(last, last)])

    print(_ratematrix.sigma_pi(info1, theta, n))
    print(_ratematrix.sigma_pi(info2, theta, n))
def test_hessian_2():
    n = 3
    seqs = [
        [1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2,
         2, 1, 1, 1, 1, 2, 3, 3, 3, 3]]

    model = ContinuousTimeMSM().fit(seqs)
    print(model.timescales_)
    print(model.uncertainty_timescales())
    theta = model.theta_
    C = model.countsmat_
    print(C)

    C_flat = (C + C.T)[np.triu_indices_from(C, k=1)]
    print(C_flat)
    print('theta', theta, '\n')
    inds = np.where(theta != 0)[0]

    hessian1 = _ratematrix.hessian(theta, C, inds=inds)
    hessian2 = nd.Jacobian(lambda x: _ratematrix.loglikelihood(x, C)[1])(theta)
    hessian3 = nd.Hessian(lambda x: _ratematrix.loglikelihood(x, C)[0])(theta)

    np.set_printoptions(precision=3)

    # H1 = hessian1[np.ix_(active, active)]
    # H2 = hessian2[np.ix_(active, active)]
    # H3 = hessian2[np.ix_(active, active)]

    print(hessian1, '\n')
    print(hessian2, '\n')
    # print(hessian3)
    print('\n')

    info1 = np.zeros((len(theta), len(theta)))
    info2 = np.zeros((len(theta), len(theta)))
    info1[np.ix_(inds, inds)] = scipy.linalg.pinv(-hessian1)
    info2[np.ix_(inds, inds)] = scipy.linalg.pinv(-hessian2[np.ix_(inds, inds)])

    print('Inverse Hessian')
    print(info1)
    print(info2)
    # print(scipy.linalg.pinv(hessian2))
    # print(scipy.linalg.pinv(hessian1)[np.ix_(last, last)])
    # print(scipy.linalg.pinv(hessian2)[np.ix_(last, last)])

    print(_ratematrix.sigma_pi(info1, theta, n))
    print(_ratematrix.sigma_pi(info2, theta, n))
def test_hessian_1():
    n = 5
    grid = NDGrid(n_bins_per_feature=n, min=-np.pi, max=np.pi)
    seqs = grid.fit_transform(load_doublewell(random_state=0)['trajectories'])

    model = ContinuousTimeMSM(use_sparse=False).fit(seqs)
    theta = model.theta_
    C = model.countsmat_

    hessian1 = _ratematrix.hessian(theta, C, n)
    Hfun = nd.Jacobian(lambda x: _ratematrix.loglikelihood(x, C, n)[1])
    hessian2 = Hfun(theta)

    # not sure what the cutoff here should be (see plot_test_hessian)
    assert np.linalg.norm(hessian1-hessian2) < 1
def test_hessian_1():
    n = 3
    seqs = [[1,1,1,1,1,2,2,2,2,1,1,1,1,3,3,3,3,3,2,2,2,2,2,2,1,1,1,1,2,3,3,3,3]]

    model = ContinuousTimeMSM().fit(seqs)
    theta = model.theta_
    C = model.countsmat_

    hessian1 = _ratematrix.hessian(theta, C)
    Hfun = nd.Jacobian(lambda x: _ratematrix.loglikelihood(x, C)[1])
    hessian2 = Hfun(theta)

    # not sure what the cutoff here should be (see plot_test_hessian)
    assert np.linalg.norm(hessian1-hessian2) < 1e-6

    print(_ratematrix.sigma_pi(-scipy.linalg.pinv(hessian1), theta, n))
Exemple #5
0
def test_hessian_1():
    n = 3
    seqs = [[
        1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2,
        1, 1, 1, 1, 2, 3, 3, 3, 3
    ]]

    model = ContinuousTimeMSM().fit(seqs)
    theta = model.theta_
    C = model.countsmat_

    hessian1 = _ratematrix.hessian(theta, C)
    Hfun = nd.Jacobian(lambda x: _ratematrix.loglikelihood(x, C)[1])
    hessian2 = Hfun(theta)

    # not sure what the cutoff here should be (see plot_test_hessian)
    assert np.linalg.norm(hessian1 - hessian2) < 1e-6

    print(_ratematrix.sigma_pi(-scipy.linalg.pinv(hessian1), theta, n))
def _plot_test_hessian():
    # plot the difference between the numerical hessian and the analytic
    # approximate hessian (opens Matplotlib window)
    n = 5
    grid = NDGrid(n_bins_per_feature=n, min=-np.pi, max=np.pi)
    seqs = grid.fit_transform(load_doublewell(random_state=0)['trajectories'])

    model = ContinuousTimeMSM(use_sparse=False).fit(seqs)
    theta = model.theta_
    C = model.countsmat_

    hessian1 = _ratematrix.hessian(theta, C, n)
    Hfun = nd.Jacobian(lambda x: _ratematrix.loglikelihood(x, C, n)[1])
    hessian2 = Hfun(theta)

    import matplotlib.pyplot as pp
    pp.scatter(hessian1.flat, hessian2.flat, marker='x')
    pp.plot(pp.xlim(), pp.xlim(), 'k')
    print('Plotting...', file=sys.stderr)
    pp.show()
 def grad(theta):
     return _ratematrix.loglikelihood(theta, C, n, inds=inds_sp, t=1.1)[1]
 def grad(theta):
     return _ratematrix.loglikelihood(theta, C, n, inds=None, t=t)[1]
 def grad(theta):
     return _ratematrix.loglikelihood(theta, C, t=t)[1]
 def func(theta):
     return _ratematrix.loglikelihood(theta, C, t=t)[0]
Exemple #11
0
 def grad(theta):
     return _ratematrix.loglikelihood(theta, C, t=t)[1]
Exemple #12
0
 def func(theta):
     return _ratematrix.loglikelihood(theta, C, t=t)[0]