Exemple #1
0
 def test_pcca_3(self):
     P = np.array([[0.9, 0.1, 0.0, 0.0],
                   [0.1, 0.9, 0.0, 0.0],
                   [0.0, 0.0, 0.8, 0.2],
                   [0.0, 0.0, 0.2, 0.8]])
     # n=2
     chi = pcca(P, 2)
     sol = np.array([[1., 0.],
                     [1., 0.],
                     [0., 1.],
                     [0., 1.]])
     assert_allclose(chi, sol)
     # n=3
     chi = pcca(P, 3)
     sol = np.array([[1., 0., 0.],
                     [0., 1., 0.],
                     [0., 0., 1.],
                     [0., 0., 1.]])
     assert_allclose(chi, sol)
     # n=4
     chi = pcca(P, 4)
     sol = np.array([[1., 0., 0., 0.],
                     [0., 1., 0., 0.],
                     [0., 0., 1., 0.],
                     [0., 0., 0., 1.]])
     assert_allclose(chi, sol)
Exemple #2
0
def ALA4_msstates( T_AA ):

    # Define the metastable states from analysis of T_AA_mle
    membership=pcca(T_AA, 4)
    # the precise definitions were fine-tuned by hand, I should plot the PCCA states to double check!
    E1 = np.where(membership[:,0]>0.4)[0]
    E2 = np.where(membership[:,1]>0.5)[0]
    H = np.where(membership[:,2]>0.5)[0]
    I = np.where(membership[:,3]>0.5)[0]
    # make sure there is no overlap
    #print "checking the overlap of metastable states:"
    check = [val for val in H if val in I]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in H if val in E1]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in H if val in E2]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in I if val in E1]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in I if val in E2]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in E1 if val in E2]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')

    return H, I, E2, E1
def ALA4_msstates( T_AA ):

    # Define the metastable states from analysis of T_AA_mle
    membership=pcca(T_AA, 4)
    # the precise definitions were fine-tuned by hand, I should plot the PCCA states to double check!
    E1 = np.where(membership[:,0]>0.4)[0]
    E2 = np.where(membership[:,1]>0.75)[0]
    H = np.where(membership[:,2]>0.6)[0]
    I = np.where(membership[:,3]>0.75)[0]
    # make sure there is no overlap
    #print "checking the overlap of metastable states:"
    check = [val for val in H if val in I]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in H if val in E1]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in H if val in E2]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in I if val in E1]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in I if val in E2]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in E1 if val in E2]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')

    return H, I, E2, E1
Exemple #4
0
 def test_pcca_1(self):
     P = np.array([[1, 0],
                   [0, 1]])
     chi = pcca(P, 2)
     sol = np.array([[1., 0.],
                     [0., 1.]])
     assert_allclose(chi, sol)
Exemple #5
0
    def test_pcca_large(self):
        import os

        P = np.loadtxt(os.path.split(__file__)[0] + '/../../P_rev_251x251.dat')
        # n=2
        chi = pcca(P, 2)
        assert (np.alltrue(chi >= 0))
        assert (np.alltrue(chi <= 1))
        # n=3
        chi = pcca(P, 3)
        assert (np.alltrue(chi >= 0))
        assert (np.alltrue(chi <= 1))
        # n=4
        chi = pcca(P, 4)
        assert (np.alltrue(chi >= 0))
        assert (np.alltrue(chi <= 1))
Exemple #6
0
 def test_pcca_2(self):
     P = np.array([[0.0, 1.0, 0.0],
                   [0.0, 0.999, 0.001],
                   [0.0, 0.001, 0.999]])
     chi = pcca(P, 2)
     sol = np.array([[1., 0.],
                     [1., 0.],
                     [0., 1.]])
     assert_allclose(chi, sol)
Exemple #7
0
 def test_pcca_4(self):
     P = np.array([[0.9, 0.1, 0.0, 0.0],
                   [0.1, 0.8, 0.1, 0.0],
                   [0.0, 0.0, 0.8, 0.2],
                   [0.0, 0.0, 0.2, 0.8]])
     chi = pcca(P, 2)
     sol = np.array([[1., 0.],
                     [1., 0.],
                     [1., 0.],
                     [0., 1.]])
     assert_allclose(chi, sol)
Exemple #8
0
    def set_model_params(self, P, m):
        """

        Parameters
        ----------
        P : ndarray (n,n)
            Transition matrix.
        m : int
            Number of clusters to group to.
        """
        # remember input
        from scipy.sparse import issparse
        if issparse(P):
            warnings.warn(
                'PCCA is only implemented for dense matrices, '
                'converting sparse transition matrix to dense ndarray.')
            P = P.toarray()
        self.P = P
        self.m = m

        # pcca coarse-graining
        # --------------------
        # PCCA memberships
        # TODO: can be improved. pcca computes stationary distribution internally, we don't need to compute it twice.
        from msmtools.analysis.dense.pcca import pcca
        self._M = pcca(P, m)

        # stationary distribution
        # TODO: in msmtools we recomputed this from P, we actually want to use pi from the msm obj, but this caused #1208
        from msmtools.analysis import stationary_distribution
        self._pi = stationary_distribution(P)

        # coarse-grained stationary distribution
        self._pi_coarse = np.dot(self._M.T, self._pi)

        # HMM output matrix
        self._B = np.dot(np.dot(np.diag(1.0 / self._pi_coarse), self._M.T),
                         np.diag(self._pi))
        # renormalize B to make it row-stochastic
        self._B /= self._B.sum(axis=1)[:, None]
        self._B /= self._B.sum(axis=1)[:, None]

        # coarse-grained transition matrix
        W = np.linalg.inv(np.dot(self._M.T, self._M))
        A = np.dot(np.dot(self._M.T, P), self._M)
        self._P_coarse = np.dot(W, A)

        # symmetrize and renormalize to eliminate numerical errors
        X = np.dot(np.diag(self._pi_coarse), self._P_coarse)
        self._P_coarse = X / X.sum(axis=1)[:, None]
def ALA3_msstates( T_AA ):

    # Define the metastable states from analysis of T_AA_mle
    membership=pcca(T_AA, 3)
    # the precise definitions were fine-tuned by hand, I should plot the PCCA states to double check!
    lH = np.where(membership[:,0]>0.60)[0]
    aH = np.where(membership[:,1]>0.60)[0]
    B = np.where(membership[:,2]>0.60)[0]
    # make sure there is no overlap
    #print "checking the overlap of metastable states:"
    check = [val for val in lH if val in aH]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in lH if val in B]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')
    check = [val for val in aH if val in B]
    if (len(check) != 0 ):  raise ValueError('Some metastable states are overlapping!')

    return B, aH, lH
Exemple #10
0
    def test_multiple_components(self):
        L = np.array([[0, 1, 1, 0, 0, 0, 0],
                      [1, 0, 1, 0, 0, 0, 0],
                      [1, 1, 0, 0, 0, 0, 0],
                      [0, 0, 0, 0, 1, 1, 1],
                      [0, 0, 0, 1, 0, 1, 0],
                      [0, 0, 0, 1, 1, 0, 1],
                      [0, 0, 0, 1, 0, 1, 0]])

        transition_matrix = L / np.sum(L, 1).reshape(-1, 1)
        chi = pcca(transition_matrix, 2)
        expected = np.array([[0., 1.],
                             [0., 1.],
                             [0., 1.],
                             [1., 0.],
                             [1., 0.],
                             [1., 0.],
                             [1., 0.]])
        np.testing.assert_equal(chi, expected)
Exemple #11
0
def ALA3_msstates(T_AA):

    # Define the metastable states from analysis of T_AA_mle
    membership = pcca(T_AA, 3)
    # the precise definitions were fine-tuned by hand, I should plot the PCCA states to double check!
    lH = np.where(membership[:, 0] > 0.60)[0]
    aH = np.where(membership[:, 1] > 0.60)[0]
    B = np.where(membership[:, 2] > 0.60)[0]
    # make sure there is no overlap
    #print "checking the overlap of metastable states:"
    check = [val for val in lH if val in aH]
    if (len(check) != 0):
        raise ValueError('Some metastable states are overlapping!')
    check = [val for val in lH if val in B]
    if (len(check) != 0):
        raise ValueError('Some metastable states are overlapping!')
    check = [val for val in aH if val in B]
    if (len(check) != 0):
        raise ValueError('Some metastable states are overlapping!')

    return B, aH, lH
Exemple #12
0
    def test_pcca_coarsegrain(self):
        # fine-grained transition matrix
        P = np.array([[0.9,  0.1,  0.0,  0.0,  0.0],
                      [0.1,  0.89, 0.01, 0.0,  0.0],
                      [0.0,  0.1,  0.8,  0.1,  0.0],
                      [0.0,  0.0,  0.01, 0.79, 0.2],
                      [0.0,  0.0,  0.0,  0.2,  0.8]])
        from msmtools.analysis import stationary_distribution
        pi = stationary_distribution(P)
        Pi = np.diag(pi)
        m = 3
        # Susanna+Marcus' expression ------------
        M = pcca(P, m)
        pi_c = np.dot(M.T, pi)
        Pi_c_inv = np.diag(1.0/pi_c)
        # restriction and interpolation operators
        R = M.T
        I = np.dot(np.dot(Pi, M), Pi_c_inv)
        # result
        ms1 = np.linalg.inv(np.dot(R,I)).T
        ms2 = np.dot(np.dot(I.T, P), R.T)
        Pc_ref = np.dot(ms1,ms2)
        # ---------------------------------------

        Pc = coarsegrain(P, 3)
        # test against Marcus+Susanna's expression
        assert np.max(np.abs(Pc - Pc_ref)) < 1e-10
        # test mass conservation
        assert np.allclose(Pc.sum(axis=1), np.ones(m))

        p = PCCA(P, m)
        # test against Marcus+Susanna's expression
        assert np.max(np.abs(p.coarse_grained_transition_matrix - Pc_ref)) < 1e-10
        # test against the present coarse-grained stationary dist
        assert np.max(np.abs(p.coarse_grained_stationary_probability - pi_c)) < 1e-10
        # test mass conservation
        assert np.allclose(p.coarse_grained_transition_matrix.sum(axis=1), np.ones(m))
Exemple #13
0
 def test_pcca_no_detailed_balance(self):
     P = np.array([[0.8, 0.1, 0.1],
                   [0.3, 0.2, 0.5],
                   [0.6, 0.3, 0.1]])
     with self.assertRaises(ValueError):
         pcca(P, 2)
Exemple #14
0
    def test_pcca_no_transition_matrix(self):
        P = np.array([[1.0, 1.0],
                      [0.1, 0.9]])

        with self.assertRaises(ValueError):
            pcca(P, 2)