Exemple #1
0
    def test_single_model_list(self):
        model, events = ancestry._parse_model_arg([None])
        assert model == msprime.StandardCoalescent()
        assert events == []

        # Tuples are also accepted as input.
        model, events = ancestry._parse_model_arg((None, ))
        assert model == msprime.StandardCoalescent()
        assert events == []

        model, events = ancestry._parse_model_arg(["hudson"])
        assert model == msprime.StandardCoalescent()
        assert events == []

        model, events = ancestry._parse_model_arg(
            [msprime.StandardCoalescent()])
        assert model == msprime.StandardCoalescent()
        assert events == []

        model, events = ancestry._parse_model_arg(["dtwf"])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == []

        model, events = ancestry._parse_model_arg(
            [msprime.DiscreteTimeWrightFisher()])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == []
Exemple #2
0
 def test_wf_hudson_back_and_forth(self):
     Ne = 100
     t1 = 100
     t2 = 200
     ts = msprime.simulate(
         sample_size=10,
         model=msprime.DiscreteTimeWrightFisher(Ne),
         recombination_rate=0.1,
         demographic_events=[
             msprime.SimulationModelChange(t1,
                                           msprime.StandardCoalescent(Ne)),
             msprime.SimulationModelChange(
                 t2, msprime.DiscreteTimeWrightFisher(Ne)),
         ],
         random_seed=2,
     )
     tree = ts.first()
     self.assertEqual(tree.num_roots, 1)
     times = ts.tables.nodes.time
     dtwf_times = times[np.logical_and(times > 0, times < t1, times > t2)]
     self.assertGreater(dtwf_times.shape[0], 0)
     self.assertTrue(np.all(dtwf_times == np.floor(dtwf_times)))
     coalescent_times = times[np.logical_and(times > t1, times < t2)]
     self.assertGreater(coalescent_times.shape[0], 0)
     self.assertTrue(np.all(coalescent_times != np.floor(coalescent_times)))
Exemple #3
0
    def test_one_event(self):
        expected_event = msprime.AncestryModelChange(
            time=1.33, model=msprime.StandardCoalescent())
        model, events = ancestry._parse_model_arg(["dtwf", (1.33, "hudson")])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == [expected_event]

        model, events = ancestry._parse_model_arg(["dtwf", (1.33, None)])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == [expected_event]

        model, events = ancestry._parse_model_arg(
            ["dtwf", (1.33, msprime.StandardCoalescent())])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == [expected_event]

        model, events = ancestry._parse_model_arg(["dtwf", expected_event])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == [expected_event]
        # We should take a copy of the event.
        assert events[0] is not expected_event

        model, events = ancestry._parse_model_arg(["dtwf", (None, None)])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == [
            msprime.AncestryModelChange(time=None,
                                        model=msprime.StandardCoalescent())
        ]
Exemple #4
0
    def test_two_events(self):
        expected_events = [
            msprime.AncestryModelChange(time=1,
                                        model=msprime.StandardCoalescent()),
            msprime.AncestryModelChange(time=2,
                                        model=msprime.SmcApproxCoalescent()),
        ]
        model, events = ancestry._parse_model_arg(
            ["dtwf", (1, "hudson"), (2, "smc")])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == expected_events

        model, events = ancestry._parse_model_arg(
            ["dtwf", (1, None), (2, msprime.SmcApproxCoalescent())])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == expected_events

        model, events = ancestry._parse_model_arg(
            ["dtwf", expected_events[0], (2, msprime.SmcApproxCoalescent())])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == expected_events

        model, events = ancestry._parse_model_arg(
            ["dtwf", expected_events[0], (2, msprime.SmcApproxCoalescent())])
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == expected_events
        assert events[0] is not expected_events[0]

        model, events = ancestry._parse_model_arg(["dtwf"] + expected_events)
        assert model == msprime.DiscreteTimeWrightFisher()
        assert events == expected_events
        assert events[0] is not expected_events[0]
        assert events[1] is not expected_events[1]
Exemple #5
0
    def test_one_event(self):
        expected_event = msprime.SimulationModelChange(
            time=1.33, model=msprime.StandardCoalescent())
        model, events = msprime.parse_model_arg(["dtwf", (1.33, "hudson")])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, [expected_event])

        model, events = msprime.parse_model_arg(["dtwf", (1.33, None)])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, [expected_event])

        model, events = msprime.parse_model_arg(
            ["dtwf", (1.33, msprime.StandardCoalescent())])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, [expected_event])

        model, events = msprime.parse_model_arg(["dtwf", expected_event])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, [expected_event])
        # We should take a copy of the event.
        self.assertIsNot(events[0], expected_event)

        model, events = msprime.parse_model_arg(["dtwf", (None, None)])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(
            events,
            [
                msprime.SimulationModelChange(
                    time=None, model=msprime.StandardCoalescent())
            ],
        )
Exemple #6
0
    def test_single_model_list(self):
        model, events = msprime.parse_model_arg([None])
        self.assertEqual(model, msprime.StandardCoalescent())
        self.assertEqual(events, [])

        # Tuples are also accepted as input.
        model, events = msprime.parse_model_arg((None, ))
        self.assertEqual(model, msprime.StandardCoalescent())
        self.assertEqual(events, [])

        model, events = msprime.parse_model_arg(["hudson"])
        self.assertEqual(model, msprime.StandardCoalescent())
        self.assertEqual(events, [])

        model, events = msprime.parse_model_arg([msprime.StandardCoalescent()])
        self.assertEqual(model, msprime.StandardCoalescent())
        self.assertEqual(events, [])

        model, events = msprime.parse_model_arg(["dtwf"])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, [])

        model, events = msprime.parse_model_arg(
            [msprime.DiscreteTimeWrightFisher()])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, [])
Exemple #7
0
    def test_two_events(self):
        expected_events = [
            msprime.SimulationModelChange(time=1,
                                          model=msprime.StandardCoalescent()),
            msprime.SimulationModelChange(time=2,
                                          model=msprime.SmcApproxCoalescent()),
        ]
        model, events = msprime.parse_model_arg(
            ["dtwf", (1, "hudson"), (2, "smc")])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, expected_events)

        model, events = msprime.parse_model_arg(
            ["dtwf", (1, None), (2, msprime.SmcApproxCoalescent())])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, expected_events)

        model, events = msprime.parse_model_arg(
            ["dtwf", expected_events[0], (2, msprime.SmcApproxCoalescent())])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, expected_events)

        model, events = msprime.parse_model_arg(
            ["dtwf", expected_events[0], (2, msprime.SmcApproxCoalescent())])
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, expected_events)
        self.assertIsNot(events[0], expected_events[0])

        model, events = msprime.parse_model_arg(["dtwf"] + expected_events)
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, expected_events)
        self.assertIsNot(events[0], expected_events[0])
        self.assertIsNot(events[1], expected_events[1])
Exemple #8
0
 def test_two_changes(self):
     models = ancestry._parse_model_arg([
         msprime.DiscreteTimeWrightFisher(duration=1),
         msprime.StandardCoalescent(duration=2),
         msprime.SmcApproxCoalescent(duration=3),
     ])
     assert models == [
         msprime.DiscreteTimeWrightFisher(duration=1),
         msprime.StandardCoalescent(duration=2),
         msprime.SmcApproxCoalescent(duration=3),
     ]
Exemple #9
0
    def test_single_model(self):
        models = ancestry._parse_model_arg("hudson")
        assert models == [msprime.StandardCoalescent()]

        models = ancestry._parse_model_arg(msprime.StandardCoalescent())
        assert models == [msprime.StandardCoalescent()]

        models = ancestry._parse_model_arg("dtwf")
        assert models == [msprime.DiscreteTimeWrightFisher()]

        models = ancestry._parse_model_arg(msprime.DiscreteTimeWrightFisher())
        assert models == [msprime.DiscreteTimeWrightFisher()]
Exemple #10
0
    def test_one_change(self):
        models = ancestry._parse_model_arg(
            [msprime.DiscreteTimeWrightFisher(duration=1.33), "hudson"])
        assert models == [
            msprime.DiscreteTimeWrightFisher(duration=1.33),
            msprime.StandardCoalescent(),
        ]

        models = ancestry._parse_model_arg(
            [msprime.DiscreteTimeWrightFisher(duration=1.33), None])
        assert models == [
            msprime.DiscreteTimeWrightFisher(duration=1.33),
            msprime.StandardCoalescent(),
        ]
Exemple #11
0
 def test_wf_hudson_different_specifications(self):
     Ne = 100
     t = 100
     ts1 = msprime.simulate(
         sample_size=10,
         model=msprime.DiscreteTimeWrightFisher(Ne),
         recombination_rate=0.1,
         demographic_events=[
             msprime.SimulationModelChange(t, msprime.StandardCoalescent(Ne))],
         random_seed=2)
     ts2 = msprime.simulate(
         sample_size=10, recombination_rate=0.1,
         Ne=Ne, model="dtwf",
         demographic_events=[msprime.SimulationModelChange(t, "hudson")],
         random_seed=2)
     ts3 = msprime.simulate(
         sample_size=10, recombination_rate=0.1,
         Ne=Ne, model="dtwf",
         demographic_events=[msprime.SimulationModelChange(t)],
         random_seed=2)
     t1 = ts1.dump_tables()
     t2 = ts2.dump_tables()
     t3 = ts3.dump_tables()
     t1.provenances.clear()
     t2.provenances.clear()
     t3.provenances.clear()
     self.assertEqual(t1, t2)
     self.assertEqual(t1, t3)
Exemple #12
0
    def test_ped_wf_recombination(self):
        inds = np.array([1, 2, 3, 4, 5, 6])
        parent_indices = np.array([4, 5, 4, 5, 4, 5, 4, 5, -1, -1, -1,
                                   -1]).reshape(-1, 2)
        times = np.array([0, 0, 0, 0, 1, 1])
        is_sample = np.array([1, 1, 1, 1, 0, 0])
        t = max(times)

        model = msprime.WrightFisherPedigree()
        ped = msprime.Pedigree(inds,
                               parent_indices,
                               times,
                               is_sample,
                               sex=None,
                               ploidy=2)
        ts = msprime.simulate(
            sample_size=4,
            pedigree=ped,
            recombination_rate=0.1,
            demographic_events=[
                msprime.SimulationModelChange(
                    1, msprime.DiscreteTimeWrightFisher(2))
            ],
            model=model,
        )
        tree = ts.first()
        self.assertEqual(tree.num_roots, 1)
        all_times = ts.tables.nodes.time
        ped_times = all_times[np.logical_and(all_times > 0, all_times <= t)]
        self.assertGreater(ped_times.shape[0], 0)
        self.assertTrue(np.all(ped_times == np.floor(ped_times)))
        wf_times = all_times[all_times > t]
        self.assertGreater(wf_times.shape[0], 0)
Exemple #13
0
 def test_wf_hudson_different_specifications(self):
     Ne = 100
     t = 100
     ts1 = msprime.sim_ancestry(
         samples=5,
         population_size=Ne,
         model=[msprime.DiscreteTimeWrightFisher(duration=t), "hudson"],
         recombination_rate=0.1,
         sequence_length=1,
         discrete_genome=False,
         random_seed=2,
     )
     ts2 = msprime.simulate(
         sample_size=10,
         recombination_rate=0.1,
         Ne=Ne,
         model="dtwf",
         demographic_events=[msprime.SimulationModelChange(t, "hudson")],
         random_seed=2,
     )
     ts3 = msprime.simulate(
         sample_size=10,
         recombination_rate=0.1,
         Ne=Ne,
         model="dtwf",
         demographic_events=[msprime.SimulationModelChange(t)],
         random_seed=2,
     )
     # Not worth trying to puzzle out the slight differences in tables
     # between the old and new form. The edges are the same, good enough.
     assert ts1.tables.edges == ts2.tables.edges
     assert ts2.equals(ts3, ignore_provenance=True)
Exemple #14
0
    def test_pedigree_unsupported_events(self):
        inds = np.array([1, 2, 3, 4, 5, 6])
        parent_indices = np.array([4, 5, 4, 5, 4, 5, 4, 5, -1, -1, -1,
                                   -1]).reshape(-1, 2)
        times = np.array([0, 0, 0, 0, 1, 1])
        is_sample = np.array([1, 1, 1, 1, 0, 0])
        t = max(times)

        ped = pedigrees.Pedigree(inds,
                                 parent_indices,
                                 times,
                                 is_sample,
                                 sex=None,
                                 ploidy=2)

        bad_model_change = msprime.SimulationModelChange(
            0.5, msprime.DiscreteTimeWrightFisher())
        with pytest.raises(RuntimeError, match="not support interruption"):
            msprime.simulate(
                4,
                pedigree=ped,
                demographic_events=[bad_model_change],
                model="wf_ped",
            )
        bad_demographic_event = msprime.PopulationParametersChange(
            t, initial_size=2)
        with pytest.raises(_msprime.LibraryError):
            msprime.simulate(
                4,
                pedigree=ped,
                demographic_events=[bad_demographic_event],
                model="wf_ped",
            )
Exemple #15
0
 def test_many_models(self):
     Ne = 10000
     ts = msprime.simulate(
         Ne=Ne,
         sample_size=10,
         recombination_rate=0.1,
         model=[
             "hudson",
             msprime.SimulationModelChange(10,
                                           msprime.StandardCoalescent()),
             msprime.SimulationModelChange(20,
                                           msprime.SmcApproxCoalescent()),
             msprime.SimulationModelChange(
                 30, msprime.SmcPrimeApproxCoalescent()),
             msprime.SimulationModelChange(
                 40, msprime.DiscreteTimeWrightFisher()),
             msprime.SimulationModelChange(
                 50,
                 msprime.BetaCoalescent(alpha=1.1, truncation_point=1),
             ),
             msprime.SimulationModelChange(60,
                                           msprime.StandardCoalescent()),
         ],
         random_seed=10,
     )
     for tree in ts.trees():
         self.assertEqual(tree.num_roots, 1)
Exemple #16
0
 def test_encode_simulation_models(self):
     models = [
         msprime.StandardCoalescent(duration=10),
         msprime.DiscreteTimeWrightFisher(duration=10),
         msprime.SmcApproxCoalescent(duration=10),
         msprime.StandardCoalescent(),
     ]
     ts = msprime.sim_ancestry(10, model=models, random_seed=1234)
     decoded = self.decode(ts.provenance(0).record)
     parameters = decoded.parameters
     assert parameters.model[0] == {
         "__class__": "msprime.ancestry.StandardCoalescent",
         "duration": 10,
     }
     assert parameters.model[1] == {
         "__class__": "msprime.ancestry.DiscreteTimeWrightFisher",
         "duration": 10,
     }
     assert parameters.model[2] == {
         "__class__": "msprime.ancestry.SmcApproxCoalescent",
         "duration": 10,
     }
     assert parameters.model[3] == {
         "__class__": "msprime.ancestry.StandardCoalescent",
         "duration": None,
     }
Exemple #17
0
 def test_dtwf(self):
     for model in [msprime.DiscreteTimeWrightFisher(10)]:
         self.assertRaises(_msprime.LibraryError,
                           msprime.simulate,
                           10,
                           model=model,
                           record_full_arg=True)
Exemple #18
0
    def test_pedigree_unsupported_events(self):
        inds = np.array([1, 2, 3, 4, 5, 6])
        parent_indices = np.array([4, 5, 4, 5, 4, 5, 4, 5, -1, -1, -1,
                                   -1]).reshape(-1, 2)
        times = np.array([0, 0, 0, 0, 1, 1])
        is_sample = np.array([1, 1, 1, 1, 0, 0])
        t = max(times)

        ped = msprime.Pedigree(inds,
                               parent_indices,
                               times,
                               is_sample,
                               sex=None,
                               ploidy=2)

        bad_model_change = msprime.SimulationModelChange(
            0.5, msprime.DiscreteTimeWrightFisher())
        self.assertRaises(
            NotImplementedError,
            msprime.simulate,
            4,
            pedigree=ped,
            demographic_events=[bad_model_change],
            model="wf_ped",
        )
        bad_demographic_event = msprime.PopulationParametersChange(
            t, initial_size=2)
        self.assertRaises(
            NotImplementedError,
            msprime.simulate,
            4,
            pedigree=ped,
            demographic_events=[bad_demographic_event],
            model="wf_ped",
        )
Exemple #19
0
 def test_many_models_simulate(self):
     Ne = 10000
     ts = msprime.simulate(
         Ne=Ne,
         sample_size=10,
         # Use the old-style SimulationModelChange
         model=[
             "hudson",
             msprime.SimulationModelChange(10,
                                           msprime.StandardCoalescent()),
             msprime.SimulationModelChange(20,
                                           msprime.SmcApproxCoalescent()),
             msprime.SimulationModelChange(
                 30, msprime.SmcPrimeApproxCoalescent()),
             msprime.SimulationModelChange(
                 40, msprime.DiscreteTimeWrightFisher()),
             msprime.SimulationModelChange(
                 50, msprime.BetaCoalescent(alpha=1.1)),
             msprime.SimulationModelChange(60,
                                           msprime.StandardCoalescent()),
         ],
         random_seed=10,
     )
     for tree in ts.trees():
         assert tree.num_roots == 1
Exemple #20
0
    def test_model_change_old_style(self):
        main_model = msprime.SmcApproxCoalescent()
        sim = msprime.simulator_factory(
            Ne=100,
            sample_size=2,
            model=main_model,
            demographic_events=[
                msprime.SimulationModelChange(
                    1, msprime.DiscreteTimeWrightFisher()),
                msprime.SimulationModelChange(2, None),
            ],
        )
        self.assertEqual(len(sim.model_change_events), 2)
        self.assertEqual(sim.model_change_events[0].time, 1)
        # When model=None we change to the standard coalescent
        self.assertEqual(sim.model_change_events[1].time, 2)
        self.assertEqual(sim.model_change_events[1].model.name, "hudson")

        # This should be the same in new notation
        sim = msprime.simulator_factory(
            Ne=100,
            sample_size=2,
            model=[main_model, (1, "dtwf"), (2, None)],
        )
        self.assertEqual(len(sim.model_change_events), 2)
        self.assertEqual(sim.model_change_events[0].time, 1)
        # When model=None we change to the standard coalescent
        self.assertEqual(sim.model_change_events[1].time, 2)
        self.assertEqual(sim.model_change_events[1].model.name, "hudson")
Exemple #21
0
    def test_single_model(self):
        model, events = msprime.parse_model_arg("hudson")
        self.assertEqual(model, msprime.StandardCoalescent())
        self.assertEqual(events, [])

        model, events = msprime.parse_model_arg(msprime.StandardCoalescent())
        self.assertEqual(model, msprime.StandardCoalescent())
        self.assertEqual(events, [])

        model, events = msprime.parse_model_arg("dtwf")
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, [])

        model, events = msprime.parse_model_arg(
            msprime.DiscreteTimeWrightFisher())
        self.assertEqual(model, msprime.DiscreteTimeWrightFisher())
        self.assertEqual(events, [])
Exemple #22
0
 def test_dtwf(self):
     for model in [msprime.DiscreteTimeWrightFisher()]:
         with pytest.raises(_msprime.LibraryError):
             msprime.simulate(
                 10,
                 model=model,
                 record_full_arg=True,
             )
def sim_msprime_hybrid(sample_size, chrom_length_mb):
    return sim_msprime(
        sample_size,
        chrom_length_mb,
        model=[
            msprime.DiscreteTimeWrightFisher(duration=100),
            msprime.StandardCoalescent(),
        ],
    )
Exemple #24
0
 def test_simulation_model_change(self):
     examples = [
         msprime.SimulationModelChange(),
         msprime.SimulationModelChange(model="hudson"),
         msprime.SimulationModelChange(
             model=msprime.DiscreteTimeWrightFisher()),
         msprime.SimulationModelChange(
             model=msprime.BetaCoalescent(alpha=1, truncation_point=2)),
     ]
     self.assert_repr_round_trip(examples)
Exemple #25
0
    def test_encode_simulation_models(self):
        simple_model = ["hudson", [10, "dtwf"], [20, "smc"], [None, None]]
        ts = msprime.simulate(10, model=simple_model)
        decoded = self.decode(ts.provenance(0).record)
        parameters = decoded.parameters
        self.assertEqual(parameters.sample_size, 10)
        self.assertEqual(list(parameters.model), simple_model)

        model_instances = [
            msprime.StandardCoalescent(),
            msprime.SimulationModelChange(10,
                                          msprime.DiscreteTimeWrightFisher()),
            msprime.SimulationModelChange(20, msprime.SmcApproxCoalescent()),
            msprime.SimulationModelChange(30,
                                          msprime.BetaCoalescent(alpha=1.1)),
        ]
        ts = msprime.simulate(10, model=model_instances)
        decoded = self.decode(ts.provenance(0).record)
        parameters = decoded.parameters
        self.assertEqual(parameters.sample_size, 10)
        self.assertEqual(parameters.model[0],
                         {"__class__": "msprime.ancestry.StandardCoalescent"})
        self.assertDictEqual(
            parameters.model[1],
            {
                "__class__": "msprime.ancestry.SimulationModelChange",
                "model": {
                    "__class__": "msprime.ancestry.DiscreteTimeWrightFisher"
                },
                "time": 10,
            },
        )
        self.assertDictEqual(
            parameters.model[2],
            {
                "__class__": "msprime.ancestry.SimulationModelChange",
                "model": {
                    "__class__": "msprime.ancestry.SmcApproxCoalescent"
                },
                "time": 20,
            },
        )
        self.assertDictEqual(
            parameters.model[3],
            {
                "__class__": "msprime.ancestry.SimulationModelChange",
                "model": {
                    "__class__": "msprime.ancestry.BetaCoalescent",
                    "alpha": 1.1,
                    "truncation_point": 1.0,
                },
                "time": 30,
            },
        )
Exemple #26
0
    def test_simulation_models(self):
        simple_model = ["hudson", [10, "dtwf"], [20, "smc"]]
        ts = msprime.simulate(10, model=simple_model)
        self.verify(ts)

        model_instances = [
            msprime.StandardCoalescent(),
            msprime.SimulationModelChange(10,
                                          msprime.DiscreteTimeWrightFisher()),
            msprime.SimulationModelChange(20, msprime.SmcApproxCoalescent()),
            msprime.SimulationModelChange(30,
                                          msprime.BetaCoalescent(alpha=1.1)),
        ]
        ts = msprime.simulate(10, model=model_instances)
        self.verify(ts)
Exemple #27
0
 def test_model_instances(self):
     models = [
         msprime.StandardCoalescent(100),
         msprime.SmcApproxCoalescent(30),
         msprime.SmcPrimeApproxCoalescent(2132),
         msprime.DiscreteTimeWrightFisher(500),
         msprime.SweepGenicSelection(
             reference_size=500, position=0.5, start_frequency=0.1,
             end_frequency=0.9, alpha=0.1, dt=0.01),
         msprime.DiracCoalescent(),
         msprime.BetaCoalescent(),
     ]
     for model in models:
         new_model = msprime.model_factory(model=model)
         self.assertFalse(new_model is model)
         self.assertEqual(new_model.__dict__, model.__dict__)
Exemple #28
0
 def test_wf_hudson_single_locus(self):
     t = 10
     ts = msprime.sim_ancestry(
         10,
         population_size=100,
         model=[msprime.DiscreteTimeWrightFisher(duration=t), "hudson"],
         random_seed=3,
     )
     tree = ts.first()
     assert tree.num_roots == 1
     times = ts.tables.nodes.time
     dtwf_times = times[np.logical_and(times > 0, times < t)]
     assert dtwf_times.shape[0] > 0
     assert np.all(dtwf_times == np.floor(dtwf_times))
     coalescent_times = times[times > t]
     assert coalescent_times.shape[0] > 0
Exemple #29
0
 def test_many_models_sim_ancestry(self):
     ts = msprime.sim_ancestry(
         samples=10,
         population_size=10_000,
         model=[
             msprime.StandardCoalescent(duration=10),
             msprime.SmcApproxCoalescent(duration=10),
             msprime.SmcPrimeApproxCoalescent(duration=10),
             msprime.DiscreteTimeWrightFisher(duration=10),
             msprime.BetaCoalescent(alpha=1.1, duration=10),
             msprime.StandardCoalescent(),
         ],
         random_seed=10,
     )
     for tree in ts.trees():
         assert tree.num_roots == 1
Exemple #30
0
 def test_model_change_no_model_inherits_Ne(self):
     sim = msprime.simulator_factory(
         sample_size=2,
         Ne=1500,
         demographic_events=[
             msprime.SimulationModelChange(
                 1, msprime.DiscreteTimeWrightFisher(500)),
             msprime.SimulationModelChange(2, None)
         ])
     self.assertEqual(sim.model.reference_size, 1500)
     self.assertEqual(len(sim.model_change_events), 2)
     self.assertEqual(sim.model_change_events[0].time, 1)
     self.assertEqual(sim.model_change_events[0].model.reference_size, 500)
     self.assertEqual(sim.model_change_events[1].time, 2)
     self.assertEqual(sim.model_change_events[1].model.reference_size, 1500)
     self.assertEqual(sim.model_change_events[1].model.name, "hudson")