def __init__(self, filepath, random_params={}, gpu_render=False, gui=False, display_data=False): self.model = load_model_from_path(filepath) self.sim = MjSim(self.model) self.filepath = filepath self.gui = gui self.display_data = display_data # Take the default random params and update anything we need self.RANDOM_PARAMS = {} self.RANDOM_PARAMS.update(random_params) if gpu_render: self.viewer = MjViewer(self.sim) else: self.viewer = None # Get start state of params to slightly jitter later self.START_GEOM_POS = self.model.geom_pos.copy() self.START_GEOM_SIZE = self.model.geom_size.copy() self.START_GEOM_QUAT = self.model.geom_quat.copy() self.START_BODY_POS = self.model.body_pos.copy() self.START_BODY_QUAT = self.model.body_quat.copy() self.START_MATID = self.model.geom_matid.copy() #self.FLOOR_OFFSET = self.model.body_pos[self.model.body_name2id('floor')] self.tex_modder = TextureModder(self.sim) self.tex_modder.whiten_materials() # ensures materials won't impact colors self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim)
def _re_init(self, xml): # TODO: Now, likely needs rank randomized_path = os.path.join(self.xml_dir, "randomizedgen3.xml") with open(randomized_path, 'wb') as fp: fp.write(xml.encode()) fp.flush() try: self.model = mujoco_py.load_model_from_path(randomized_path) except: print("Unable to load the xml file") self.sim = mujoco_py.MjSim(self.model, nsubsteps=self.n_substeps) self.modder = TextureModder(self.sim) self.mat_modder = MaterialModder(self.sim) self.light_modder = LightModder(self.sim) self.camera_modder = CameraModder(self.sim) self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self._env_setup(initial_qpos=self.initial_qpos) self.initial_state = copy.deepcopy(self.sim.get_state()) if self.viewer: self.viewer.update_sim(self.sim)
def __init__(self, model_path, initial_qpos, n_actions, n_substeps): if model_path.startswith('/'): fullpath = model_path else: fullpath = os.path.join(os.path.dirname(__file__), 'assets', model_path) if not os.path.exists(fullpath): raise IOError('File {} does not exist'.format(fullpath)) model = mujoco_py.load_model_from_path(fullpath) self.sim = mujoco_py.MjSim(model, nsubsteps=n_substeps) #self.viewer = None # comment when using "human" self.viewer = mujoco_py.MjViewer( self.sim) #comment when using "rgb_array" self._viewers = {} self.modder = TextureModder(self.sim) self.visual_randomize = True self.mat_modder = MaterialModder(self.sim) self.light_modder = LightModder(self.sim) self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self.visual_data_recording = True self._index = 0 self._label_matrix = [] self.seed() self._env_setup(initial_qpos=initial_qpos) self.initial_state = copy.deepcopy(self.sim.get_state()) self.goal = self._sample_goal() obs = self._get_obs() self.action_space = spaces.Box(-1., 1., shape=(n_actions, ), dtype='float32') self.observation_space = spaces.Dict( dict( desired_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), achieved_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), observation=spaces.Box(-np.inf, np.inf, shape=obs['observation'].shape, dtype='float32'), )) if self.viewer: self._viewer_setup()
def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Get start state of params to slightly jitter later self.start_geo_size = self.model.geom_size.copy() self.start_geom_quat = self.model.geom_quat.copy() self.start_body_pos = self.model.body_pos.copy() self.start_body_quat = self.model.body_quat.copy() self.start_matid = self.model.geom_matid.copy() self.floor_offset = self.model.body_pos[self.model.body_name2id( 'floor')] self.rock_mod_cache = None self.tex_modder = TextureModder(self.sim) self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim) # Set these both externally to visualize self.visualize = False self.viewer = None
def __init__(self, model_path, initial_qpos, n_actions, n_substeps): if model_path.startswith('/'): fullpath = model_path else: fullpath = os.path.join(os.path.dirname(__file__), 'assets', model_path) if not os.path.exists(fullpath): raise IOError('File {} does not exist'.format(fullpath)) model = mujoco_py.load_model_from_path(fullpath) self.sim = mujoco_py.MjSim(model, nsubsteps=n_substeps) self.modder = TextureModder(self.sim) self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim) self.viewer = None self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self.seed() self._env_setup(initial_qpos=initial_qpos) self.initial_state = copy.deepcopy(self.sim.get_state()) self.goal = self._sample_goal() obs = self._get_obs() self.action_space = spaces.Box(-1., 1., shape=(n_actions, ), dtype='float32') self.observation_space = spaces.Dict( dict( desired_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), achieved_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), observation=spaces.Box(-np.inf, np.inf, shape=obs['observation'].shape, dtype='float32'), )) self.episodeAcs = [] self.episodeObs = [] self.episodeInfo = []
def _render_seg(sim: mujoco_py.MjSim, camera: str, render_height: int, render_width: int, world_xml: ET.Element): lm = LightModder(sim) # switch all lights off light_names = [l.attrib['name'] for l in world_xml.findall(".//light")] for light_name in light_names: lm.set_active(light_name, 0) # take screenshot frame = sim.render(render_width * 2, render_height, camera_name=camera) # reset lights for light_name in light_names: lm.set_active(light_name, 1) return frame
def _render_rgb(sim: mujoco_py.MjSim, camera: str, render_height: int, render_width: int, world_xml: ET.Element): lm = LightModder(sim) cam_names = [c.attrib['name'] for c in world_xml.findall(".//camera")] # lights off for all other cameras except the recording one for cam in cam_names: light_name = _get_cam_light_name(cam) if light_name in sim.model.light_names: lm.set_active(light_name, 1 if cam == camera else 0) # take screenshot frame = sim.render(render_width * 2, render_height, camera_name=camera) # reset camera lights for cam in cam_names: light_name = _get_cam_light_name(cam) if light_name in sim.model.light_names: lm.set_active(light_name, 1) return frame
class ArenaModder(BaseModder): """ Object to handle randomization of all relevant properties of Mujoco sim """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Get start state of params to slightly jitter later self.start_geo_size = self.model.geom_size.copy() self.start_geom_quat = self.model.geom_quat.copy() self.start_body_pos = self.model.body_pos.copy() self.start_body_quat = self.model.body_quat.copy() self.start_matid = self.model.geom_matid.copy() self.floor_offset = self.model.body_pos[self.model.body_name2id( 'floor')] self.rock_mod_cache = None self.tex_modder = TextureModder(self.sim) self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim) # Set these both externally to visualize self.visualize = False self.viewer = None def whiten_materials(self): self.tex_modder.whiten_materials() def randomize(self): self.mod_textures() self.mod_lights() self.mod_camera() self.mod_walls() self.mod_extras() self.mod_rocks() def mod_textures(self): """Randomize all the textures in the scene, including the skybox""" for name in self.sim.model.geom_names: if name != "billboard" and "light_disc" not in name: self.tex_modder.rand_all(name) ##texture_sizes = [32, 64, 128, 256, 512, 1024] ##gid = self.model.geom_name2id(name) ##mid = self.model.geom_matid[gid] ##tid = self.model.mat_texid[mid] ##self.model.tex_width[tid] = sample_from_list(texture_sizes) ##self.model.tex_height[tid] = 6 * self.model.tex_width[tid] self.tex_modder.rand_all('skybox') def mod_lights(self): """Randomize pos, direction, and lights""" # light stuff LIGHT_RX = Range(LEFTX, RIGHTX) LIGHT_RY = Range(BINY, DIGY) LIGHT_RZ = Range(AFZ, AFZ + ZHIGH) LIGHT_RANGE3D = Range3D(LIGHT_RX, LIGHT_RY, LIGHT_RZ) LIGHT_UNIF = Range3D(Range(0, 1), Range(0, 1), Range(0, 1)) for i, name in enumerate(self.model.light_names): lid = self.model.light_name2id(name) # random sample 80% of any given light being on self.light_modder.set_active(name, sample([0, 1]) < 0.8) #self.light_modder.set_active(name, 0) dir_xyz = sample_light_dir() self.light_modder.set_pos(name, sample_xyz(LIGHT_RANGE3D)) self.light_modder.set_dir(name, dir_xyz) self.light_modder.set_specular(name, sample_xyz(LIGHT_UNIF)) #self.light_modder.set_diffuse(name, sample_xyz(LIGHT_UNIF)) #self.light_modder.set_ambient(name, sample_xyz(LIGHT_UNIF)) #self.model.light_directional[lid] = sample([0,1]) < 0.01 def mod_camera(self): """Randomize pos, direction, and fov of camera""" # Params XOFF = 1.0 CAM_RX = Range(ACX - XOFF, ACX + XOFF) # center of arena +/- 0.5 CAM_RY = Range(BINY + 0.2, SZ_ENDY) CAM_RZ = Range(AFZ + ZLOW, AFZ + ZHIGH) CAM_RANGE3D = Range3D(CAM_RX, CAM_RY, CAM_RZ) CAM_RYAW = Range(-95, -85) CAM_RPITCH = Range(65, 90) CAM_RROLL = Range(85, 95) # this might actually be pitch? CAM_ANGLE3 = Range3D(CAM_RYAW, CAM_RPITCH, CAM_RROLL) # "The horizontal field of view is computed automatically given the # window size and the vertical field of view." - Mujoco # This range was calculated using: themetalmuncher.github.io/fov-calc/ # ZED has 110° hfov --> 78° vfov, Logitech C920 has 78° hfov ---> 49° vfov # These were rounded all the way down to 40° and up to 80°. It starts # to look a bit bad in the upper range, but I think it will help # generalization. CAM_RFOVY = Range(40, 80) # Actual mods self.cam_modder.set_pos('camera1', sample_xyz(CAM_RANGE3D)) self.cam_modder.set_quat('camera1', sample_quat(CAM_ANGLE3)) fovy = sample(CAM_RFOVY) self.cam_modder.set_fovy('camera1', fovy) def _set_visible(self, prefix, range_top, visible): """Helper function to set visibility of several objects""" if not visible: if range_top == 0: name = prefix gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 0.0 for i in range(range_top): name = "{}{}".format(prefix, i) gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 0.0 else: if range_top == 0: name = prefix gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 1.0 for i in range(range_top): name = "{}{}".format(prefix, i) gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 1.0 def mod_extra_distractors(self, visible=True): """mod rocks and tools on the side of the arena""" # TODO: I might consider changing these to look like rocks instead of # just random shapes. It just looks weird to me right now. Ok for now, # but it seems a bit off. N = 20 self._set_visible("side_obj", N, visible) if not visible: return Z_JITTER = 0.05 OBJ_XRANGE = Range(0.01, 0.1) OBJ_YRANGE = Range(0.01, 0.1) OBJ_ZRANGE = Range(0.01, 0.1) OBJ_SIZE_RANGE = Range3D(OBJ_XRANGE, OBJ_YRANGE, OBJ_ZRANGE) floor_gid = self.model.geom_name2id("floor") left_body_id = self.model.body_name2id("left_wall") left_geom_id = self.model.geom_name2id("left_wall") right_body_id = self.model.body_name2id("right_wall") right_geom_id = self.model.geom_name2id("right_wall") left_center = self.model.body_pos[left_body_id] left_geo = self.model.geom_size[left_geom_id] left_height = left_center[2] + left_geo[2] left_xrange = Range(left_center[0] - left_geo[0], left_center[0] + left_geo[0]) left_yrange = Range(left_center[1] - left_geo[1], left_center[1] + left_geo[1]) left_zrange = 0.02 + Range(left_height - Z_JITTER, left_height + Z_JITTER) left_range = Range3D(left_xrange, left_yrange, left_zrange) right_center = self.model.body_pos[right_body_id] right_geo = self.model.geom_size[right_geom_id] right_height = right_center[2] + right_geo[2] right_xrange = Range(right_center[0] - right_geo[0], right_center[0] + right_geo[0]) right_yrange = Range(right_center[1] - right_geo[1], right_center[1] + right_geo[1]) right_zrange = 0.02 + Range(right_height - Z_JITTER, right_height + Z_JITTER) right_range = Range3D(right_xrange, right_yrange, right_zrange) for i in range(N): name = "side_obj{}".format(i) obj_bid = self.model.body_name2id(name) obj_gid = self.model.geom_name2id(name) self.model.geom_quat[obj_gid] = random_quat() self.model.geom_size[obj_gid] = sample_xyz(OBJ_SIZE_RANGE) self.model.geom_type[obj_gid] = sample_geom_type() # 50% chance of invisible if sample([0, 1]) < 0.5: self.model.geom_rgba[obj_gid][-1] = 0.0 else: self.model.geom_rgba[obj_gid][-1] = 1.0 ## 50% chance of same color as floor and rocks if sample([0, 1]) < 0.5: self.model.geom_matid[obj_gid] = self.model.geom_matid[ floor_gid] else: self.model.geom_matid[obj_gid] = self.start_matid[obj_gid] # 10 always on the left, 10 always on the right if i < 10: self.model.body_pos[obj_bid] = sample_xyz(left_range) else: self.model.body_pos[obj_bid] = sample_xyz(right_range) def mod_extra_judges(self, visible=True): """mod NASA judges around the perimeter of the arena""" # TODO: might want to add regions on the sides of the arena, but these # may be covered by the distractors already N = 5 self._set_visible("judge", N, visible) if not visible: return JUDGE_XRANGE = Range(0.1, 0.2) JUDGE_YRANGE = Range(0.1, 0.2) JUDGE_ZRANGE = Range(0.75, 1.0) JUDGE_SIZE_RANGE = Range3D(JUDGE_XRANGE, JUDGE_YRANGE, JUDGE_ZRANGE) digwall_bid = self.model.body_name2id("dig_wall") digwall_gid = self.model.geom_name2id("dig_wall") digwall_center = self.model.body_pos[digwall_bid] digwall_geo = self.model.geom_size[digwall_gid] digwall_xrange = Range(-1.0 + digwall_center[0] - digwall_geo[0], 1.0 + digwall_center[0] + digwall_geo[0]) digwall_yrange = Range(digwall_center[1] + 0.5, digwall_center[1] + 1.5) digwall_zrange = JUDGE_ZRANGE - 0.75 digwall_range = Range3D(digwall_xrange, digwall_yrange, digwall_zrange) for i in range(N): name = "judge{}".format(i) judge_bid = self.model.body_name2id(name) judge_gid = self.model.geom_name2id(name) #self.model.geom_quat[judge_gid] = jitter_quat(self.start_geom_quat[judge_gid], 0.05) self.model.geom_quat[judge_gid] = random_quat() self.model.geom_size[judge_gid] = sample_xyz(JUDGE_SIZE_RANGE) self.model.geom_type[judge_gid] = sample_geom_type() if self.model.geom_type[judge_gid] == 3 or self.model.geom_type[ judge_gid] == 5: self.model.geom_size[judge_gid][1] = self.model.geom_size[ judge_gid][2] self.model.body_pos[judge_bid] = sample_xyz(digwall_range) # 50% chance of invisible self.model.geom_rgba[judge_gid][-1] = sample([0, 1]) < 0.5 def mod_extra_robot_parts(self, visible=True): """add distractor parts of robots in the lower area of the camera frame""" N = 3 self._set_visible("robot_part", N, visible) if not visible: return # Project difference into camera coordinate frame cam_pos = self.model.cam_pos[0] cam_quat = np.quaternion(*self.model.cam_quat[0]) lower_range = Range3D([0.0, 0.0], [-0.2, -0.3], [-0.2, -0.3]) lower_size = Range3D([0.2, 0.6], [0.01, 0.15], [0.01, 0.15]) lower_angle = Range3D([-85.0, -95.0], [-180, 180], [-85, -95]) upper_range = Range3D([-0.6, 0.6], [-0.05, 0.05], [-0.05, 0.05]) upper_size = Range3D([0.005, 0.05], [0.005, 0.05], [0.01, 0.3]) upper_angle = Range3D([-85.0, -95.0], [-180, 180], [-85, -95]) name = "robot_part0" lower_bid = self.model.body_name2id(name) lower_gid = self.model.geom_name2id(name) lower_pos = cam_pos + quaternion.rotate_vectors( cam_quat, sample_xyz(lower_range)) self.model.body_pos[lower_bid] = lower_pos self.model.geom_size[lower_gid] = sample_xyz(lower_size) self.model.geom_quat[lower_gid] = sample_quat(lower_angle) self.model.geom_type[lower_gid] = sample_geom_type(reject=["capsule"]) if self.model.geom_type[lower_gid] == 5: self.model.geom_size[lower_gid][0] = self.model.geom_size[ lower_gid][2] for i in range(1, 10): name = "robot_part{}".format(i) upper_bid = self.model.body_name2id(name) upper_gid = self.model.geom_name2id(name) upper_pos = lower_pos + sample_xyz(upper_range) self.model.body_pos[upper_bid] = upper_pos self.model.geom_size[upper_gid] = sample_xyz(upper_size) self.model.geom_type[upper_gid] = sample_geom_type() # 50% of the time, choose random angle instead reasonable angle if sample([0, 1]) < 0.5: self.model.geom_quat[upper_gid] = sample_quat(upper_angle) else: self.model.geom_quat[upper_gid] = random_quat() def mod_extra_arena_structure(self, visible=True): """add randomized structure of the arena in the background with pillars and a crossbar""" N = 16 self._set_visible("arena_structure", N, visible) if not visible: return STARTY = DIGY + 3.0 ENDY = DIGY + 5.0 XBAR_SIZE = Range3D([10.0, 20.0], [0.05, 0.1], [0.2, 0.5]) XBAR_RANGE = Range3D([0.0, 0.0], [STARTY, ENDY], [3.0, 5.0]) STRUCTURE_SIZE = Range3D([0.05, 0.1], [0.05, 0.1], [3.0, 6.0]) STRUCTURE_RANGE = Range3D([np.nan, np.nan], [STARTY, ENDY], [0.0, 0.0]) x_range = np.linspace(ACX - 10.0, ACX + 10.0, 15) # crossbar name = "arena_structure{}".format(N - 1) xbar_bid = self.model.body_name2id(name) xbar_gid = self.model.geom_name2id(name) self.model.geom_quat[xbar_gid] = jitter_quat( self.start_geom_quat[xbar_gid], 0.01) self.model.geom_size[xbar_gid] = sample_xyz(XBAR_SIZE) self.model.body_pos[xbar_bid] = sample_xyz(XBAR_RANGE) ### 10% chance of invisible ##if sample([0,1]) < 0.1: ## self.model.geom_rgba[xbar_gid][-1] = 0.0 ##else: ## self.model.geom_rgba[xbar_gid][-1] = 1.0 for i in range(N - 1): name = "arena_structure{}".format(i) arena_structure_bid = self.model.body_name2id(name) arena_structure_gid = self.model.geom_name2id(name) STRUCTURE_RANGE[0] = Range(x_range[i] - 0.1, x_range[i] + 0.1) self.model.geom_quat[arena_structure_gid] = jitter_quat( self.start_geom_quat[arena_structure_gid], 0.01) self.model.geom_size[arena_structure_gid] = sample_xyz( STRUCTURE_SIZE) self.model.body_pos[arena_structure_bid] = sample_xyz( STRUCTURE_RANGE) self.model.geom_matid[arena_structure_gid] = self.model.geom_matid[ xbar_gid] # 10% chance of invisible if sample([0, 1]) < 0.1: self.model.geom_rgba[arena_structure_gid][-1] = 0.0 else: self.model.geom_rgba[arena_structure_gid][-1] = 1.0 def mod_extra_arena_background(self, visible=True, N=10): """ """ self._set_visible("background", N, visible) if not visible: return BACKGROUND_XRANGE = Range(0.1, 0.5) BACKGROUND_YRANGE = Range(0.1, 0.5) BACKGROUND_ZRANGE = Range(0.1, 1.0) BACKGROUND_SIZE_RANGE = Range3D(BACKGROUND_XRANGE, BACKGROUND_YRANGE, BACKGROUND_ZRANGE) digwall_bid = self.model.body_name2id("dig_wall") digwall_gid = self.model.geom_name2id("dig_wall") c = digwall_center = self.model.body_pos[digwall_bid] background_range = Range3D([c[0] - 4.0, c[0] + 4.0], [c[1] + 8.0, c[1] + 12.0], [0.0, 5.0]) for i in range(N): name = "background{}".format(i) background_bid = self.model.body_name2id(name) background_gid = self.model.geom_name2id(name) self.model.geom_quat[background_gid] = random_quat() self.model.geom_size[background_gid] = sample_xyz( BACKGROUND_SIZE_RANGE) self.model.geom_type[background_gid] = sample_geom_type() self.model.body_pos[background_bid] = sample_xyz(background_range) def mod_extra_lights(self, visible=True): """""" #visible = False MODE_TARGETBODY = 3 STARTY = DIGY + 3.0 ENDY = DIGY + 5.0 LIGHT_RANGE = Range3D([ACX - 2.0, ACX + 2.0], [STARTY, ENDY], [3.0, 5.0]) any_washed = False for i in range(3): name = "extra_light{}".format(i) lid = self.model.light_name2id(name) self.model.light_active[lid] = visible if not visible: return self.model.light_pos[lid] = sample_xyz(LIGHT_RANGE) self.model.light_dir[lid] = sample_light_dir() self.model.light_directional[lid] = 0 ### 3% chance of directional light, washing out colors ### (P(at least 1 will be triggered) ~= 0.1) = 1 - 3root(p) washout = sample([0, 1]) < 0.03 any_washed = any_washed or washout self.model.light_directional[lid] = washout if any_washed: self.mod_extra_light_discs( visible=visible and sample([0, 1]) < 0.9) else: self.mod_extra_light_discs(visible=False) def mod_extra_light_discs(self, visible=True): """""" N = 10 self._set_visible("light_disc", N, visible) if not visible: return Z_JITTER = 0.05 DISC_XRANGE = Range(0.1, 4.0) DISC_YRANGE = Range(0.1, 4.0) DISC_ZRANGE = Range(0.1, 4.0) DISC_SIZE_RANGE = Range3D(DISC_XRANGE, DISC_YRANGE, DISC_ZRANGE) OUTR = 20.0 INR = 10.0 floor_bid = self.model.body_name2id("floor") c = self.model.body_pos[floor_bid] disc_xrange = Range(c[0] - OUTR, c[0] + OUTR) disc_yrange = Range(c[1], c[1] + OUTR) disc_zrange = Range(-5.0, 10.0) disc_range = Range3D(disc_xrange, disc_yrange, disc_zrange) for i in range(N): name = "light_disc{}".format(i) disc_bid = self.model.body_name2id(name) disc_gid = self.model.geom_name2id(name) disc_mid = self.model.geom_matid[disc_gid] self.model.geom_quat[disc_gid] = random_quat() self.model.geom_size[disc_gid] = sample_xyz(DISC_SIZE_RANGE) self.model.geom_type[disc_gid] = sample_geom_type() # keep trying to place the disc until it lands outside of blocking stuff # (they will land in a u shape, because they are sampled with a # constrain to not land in the middle) while True: xyz = sample_xyz(disc_range) if ((xyz[0] > (c[0] - INR) and xyz[0] < (c[0] + INR)) and (xyz[1] > (c[1] - INR) and xyz[1] < (c[1] + INR))): continue else: self.model.geom_pos[disc_gid] = xyz break # 50% chance of invisible if sample([0, 1]) < 0.5: self.model.geom_rgba[disc_gid][-1] = 0.0 else: self.model.geom_rgba[disc_gid][-1] = 1.0 def mod_extras(self, visible=True): """ Randomize extra properties of the world such as the extra rocks on the side of the arena wal The motivation for these mods are that it seems likely that these distractor objects, judges, etc, in the real images could degrade the performance of the detector. Artifacts: - Rocks and tools on edges of bin - NASA judges around the perimeter - Parts of the robot in the frame - Background arena structure and crowd - Bright light around edges of arena """ self.mod_extra_distractors(visible) self.mod_extra_robot_parts(visible) self.mod_extra_lights(visible) # 10% of the time, hide the other distractor pieces self.mod_extra_judges(visible=visible and sample([0, 1]) < 0.9) self.mod_extra_arena_structure( visible=visible and sample([0, 1]) < 0.9) self.mod_extra_arena_background( visible=visible and sample([0, 1]) < 0.9) def mod_walls(self): """ Randomize the x, y, and orientation of the walls slights. Also drastically randomize the height of the walls. In many cases they won't be seen at all. This will allow the model to generalize to scenarios without walls, or where the walls and geometry is slightly different than the sim model """ wall_names = ["left_wall", "right_wall", "bin_wall", "dig_wall"] for name in wall_names: geom_id = self.model.geom_name2id(name) body_id = self.model.body_name2id(name) jitter_x = Range(-0.2, 0.2) jitter_y = Range(-0.2, 0.2) jitter_z = Range(-0.75, 0.0) jitter3D = Range3D(jitter_x, jitter_y, jitter_z) self.model.body_pos[ body_id] = self.start_body_pos[body_id] + sample_xyz(jitter3D) self.model.body_quat[body_id] = jitter_quat( self.start_body_quat[body_id], 0.005) if sample([0, 1]) < 0.05: self.model.body_pos[body_id][2] = -2.0 def mod_dirt(self): """Randomize position and rotation of dirt""" # TODO: 50% chance to flip the dirt pile upsidedown, then we will have # to account for this in calculations # dirt stuff DIRT_RX = Range(0.0, 0.3) DIRT_RY = Range(0.0, 0.3) DIRT_RZ = Range(-0.05, 0.03) DIRT_RANGE3D = Range3D(DIRT_RX, DIRT_RY, DIRT_RZ) DIRT_RYAW = Range(-180, 180) DIRT_RPITCH = Range(-90.5, -89.5) DIRT_RROLL = Range(-0.5, 0.5) DIRT_ANGLE3 = Range3D(DIRT_RYAW, DIRT_RPITCH, DIRT_RROLL) dirt_bid = self.model.body_name2id("dirt") dirt_gid = self.model.geom_name2id("dirt") dirt_mid = self.model.geom_dataid[dirt_gid] # randomize position and yaw of dirt self.model.body_pos[dirt_bid] = self.start_body_pos[ dirt_bid] + sample_xyz(DIRT_RANGE3D) self.model.geom_quat[dirt_gid] = sample_quat(DIRT_ANGLE3) vert_adr = self.model.mesh_vertadr[dirt_mid] vert_num = self.model.mesh_vertnum[dirt_mid] mesh_verts = self.model.mesh_vert[vert_adr:vert_adr + vert_num] rot_quat = self.model.geom_quat[dirt_gid] rots = quaternion.rotate_vectors( np.quaternion(*rot_quat).normalized(), mesh_verts) mesh_abs_pos = self.floor_offset + self.model.body_pos[dirt_bid] + rots #xy_indexes = mesh_abs_pos[:, 0:2] #z_heights = mesh_abs_pos[:, 2] # Return a function that the user can call to get the approximate # height of an xy location def local_mean_height(xy): """ Take an xy coordinate, and the approximate z height of the mesh at that location. It works decently. Uses a weighted average mean of all points within a threshold of xy. """ # grab all mesh points within threshold euclidean distance of xy gt0_xyz = mesh_abs_pos[mesh_abs_pos[:, 2] > 0.01] eudists = np.sum(np.square(gt0_xyz[:, 0:2] - xy), axis=1) indices = eudists < 0.1 close_xyz = gt0_xyz[indices] # if there are any nearby points above 0 if np.count_nonzero(close_xyz[:, 2]) > 0: # weights for weighted sum. closer points to xy have higher weight weights = 1 / (eudists[indices]) weights = np.expand_dims(weights / np.sum(weights), axis=1) pos = np.sum(close_xyz * weights, axis=0) # show an "o" and a marker where the height is if self.visualize: self.viewer.add_marker(pos=pos, label="o", size=np.array([0.01, 0.01, 0.01]), rgba=np.array([0.0, 1.0, 0.0, 1.0])) # approximate z height of ground return pos[2] else: return 0 def always_zero(xy): return 0 dirt_height_xy = local_mean_height #dirt_height_xy = always_zero return dirt_height_xy def mod_rocks(self): """ Randomize the rocks so that the model will generalize to competition rocks This randomizations currently being done are: - Positions (within guesses of competition regions) - Orientations - Shuffling the 3 rock meshes so that they can be on the left, middle, or right - Generating new random rock meshes every n runs (with Blender) """ # Rock placement range parameters ROCK_LANEX = 0.4 # width parameters of x range OUTER_EXTRA = 0.5 # how much farther rocks should go out on the right and left lanes ROCK_BUFFX = 0.2 # distacne between rock lanes # How far into the obstacle zone the rocks should start. ROCK_START_OFFSET = 0.2 MID_START_OFFSET = 0.4 # bit more for middle rock ROCK_RY = Range(OBS_SY + ROCK_START_OFFSET, OBS_ENDY) MID_RY = Range(OBS_SY + MID_START_OFFSET, OBS_ENDY) ROCK_RZ = Range(AFZ - 0.02, AFZ + 0.2) # Position dependent ranges LEFT_RX = Range(-3 * ROCK_LANEX - OUTER_EXTRA, -ROCK_LANEX - ROCK_BUFFX) MID_RX = Range(-ROCK_LANEX, ROCK_LANEX) RIGHT_RX = Range(ROCK_BUFFX + ROCK_LANEX, 3 * ROCK_LANEX + OUTER_EXTRA) # Form full 3D sample range LEFT_ROCK_RANGE = Range3D(LEFT_RX, ROCK_RY, ROCK_RZ) MID_ROCK_RANGE = Range3D(MID_RX, MID_RY, ROCK_RZ) RIGHT_ROCK_RANGE = Range3D(RIGHT_RX, ROCK_RY, ROCK_RZ) ROCK_RANGES = [LEFT_ROCK_RANGE, MID_ROCK_RANGE, RIGHT_ROCK_RANGE] # actual mods rock_body_ids = {} rock_geom_ids = {} rock_mesh_ids = {} max_height_idxs = {} rot_cache = {} #max_height_xys = {} dirt_height_xy = self.mod_dirt() for name in self.model.geom_names: if name[:4] != "rock": continue geom_id = self.model.geom_name2id(name) body_id = self.model.body_name2id(name) mesh_id = self.model.geom_dataid[geom_id] rock_geom_ids[name] = geom_id rock_body_ids[name] = body_id rock_mesh_ids[name] = mesh_id # Rotate the rock and get the z value of the highest point in the # rotated rock mesh rot_quat = random_quat() vert_adr = self.model.mesh_vertadr[mesh_id] vert_num = self.model.mesh_vertnum[mesh_id] mesh_verts = self.model.mesh_vert[vert_adr:vert_adr + vert_num] rots = quaternion.rotate_vectors( np.quaternion(*rot_quat).normalized(), mesh_verts) self.model.geom_quat[geom_id] = rot_quat max_height_idx = np.argmax(rots[:, 2]) max_height_idxs[name] = max_height_idx rot_cache[name] = rots # Shuffle the positions of the rocks (l or m or r) shuffle_names = list(rock_body_ids.keys()) random.shuffle(shuffle_names) self.rock_mod_cache = [] for i in range(len(shuffle_names)): name = shuffle_names[i] rots = rot_cache[name] self.model.body_pos[rock_body_ids[name]] = np.array( sample_xyz(ROCK_RANGES[i])) max_height_idx = max_height_idxs[name] xyz_for_max_z = rots[max_height_idx] # xyz coords in global frame global_xyz = self.floor_offset + xyz_for_max_z + self.model.body_pos[ rock_body_ids[name]] gxy = global_xyz[0:2] max_height = global_xyz[2] if self.visualize: self.viewer.add_marker(pos=global_xyz, label="m", size=np.array([0.01, 0.01, 0.01]), rgba=np.array([0.0, 0.0, 1.0, 1.0])) dirt_z = dirt_height_xy(gxy) #dirt_z = 0 #print(name, dirt_z) z_height = max_height - dirt_z self.rock_mod_cache.append((name, z_height)) def get_ground_truth(self): """ self.rock_mod_cache set from self.mod_rocks Return 1d numpy array of 9 elements for positions of all 3 rocks including: - rock x dist from cam - rock y dist from cam - rock z height from arena floor """ cam_pos = self.model.cam_pos[0] #line_pos = self.floor_offset + np.array([0.0, 0.75, 0.0]) #self.viewer.add_marker(pos=line_pos) ##r0_pos = self.floor_offset + self.model.body_pos[self.model.body_name2id('rock0')] ##r1_pos = self.floor_offset + self.model.body_pos[self.model.body_name2id('rock1')] ##r2_pos = self.floor_offset + self.model.body_pos[self.model.body_name2id('rock2')] ##r0_diff = r0_pos - cam_pos ##r1_diff = r1_pos - cam_pos ##r2_diff = r2_pos - cam_pos ground_truth = np.zeros(9, dtype=np.float32) for i, slot in enumerate(self.rock_mod_cache): name = slot[0] z_height = slot[1] pos = self.floor_offset + self.model.body_pos[ self.model.body_name2id(name)] diff = pos - cam_pos # Project difference into camera coordinate frame cam_angle = quaternion.as_euler_angles( np.quaternion(*self.model.cam_quat[0]))[0] cam_angle += np.pi / 2 in_cam_frame = np.zeros_like(diff) x = diff[1] y = -diff[0] in_cam_frame[0] = x * np.cos(cam_angle) + y * np.sin(cam_angle) in_cam_frame[1] = -x * np.sin(cam_angle) + y * np.cos(cam_angle) in_cam_frame[2] = z_height # simple check that change of frame is mathematically valid assert (np.isclose(np.sum(np.square(diff[:2])), np.sum(np.square(in_cam_frame[:2])))) # swap positions to match ROS standard coordinates ground_truth[3 * i + 0] = in_cam_frame[0] ground_truth[3 * i + 1] = in_cam_frame[1] ground_truth[3 * i + 2] = in_cam_frame[2] text = "{0} x: {1:.2f} y: {2:.2f} height:{3:.2f}".format( name, ground_truth[3 * i + 0], ground_truth[3 * i + 1], z_height) ##text = "x: {0:.2f} y: {1:.2f} height:{2:.2f}".format(ground_truth[3*i+0], ground_truth[3*i+1], z_height) ##text = "height:{0:.2f}".format(z_height) if self.visualize: self.viewer.add_marker(pos=pos, label=text, rgba=np.zeros(4)) return ground_truth
class SimManager(object): """Object to generate sequence of images with their transforms""" def __init__(self, filepath, random_params={}, gpu_render=False, gui=False, display_data=False): self.model = load_model_from_path(filepath) self.sim = MjSim(self.model) self.filepath = filepath self.gui = gui self.display_data = display_data # Take the default random params and update anything we need self.RANDOM_PARAMS = {} self.RANDOM_PARAMS.update(random_params) if gpu_render: self.viewer = MjViewer(self.sim) else: self.viewer = None # Get start state of params to slightly jitter later self.START_GEOM_POS = self.model.geom_pos.copy() self.START_GEOM_SIZE = self.model.geom_size.copy() self.START_GEOM_QUAT = self.model.geom_quat.copy() self.START_BODY_POS = self.model.body_pos.copy() self.START_BODY_QUAT = self.model.body_quat.copy() self.START_MATID = self.model.geom_matid.copy() #self.FLOOR_OFFSET = self.model.body_pos[self.model.body_name2id('floor')] self.tex_modder = TextureModder(self.sim) self.tex_modder.whiten_materials( ) # ensures materials won't impact colors self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim) self.start_obj_pose = self.sim.data.get_joint_qpos( 'object:joint').copy() def get_data(self, num_images=10): """ Returns camera intrinsics, and a sequence of images, pose transforms, and camera transforms """ # randomize the scene self._rand_textures() self._rand_lights() self._rand_object() self._rand_walls() self._rand_distract() sequence = defaultdict(list) context = {} # object pose obj_pose, robot_pose = self._get_ground_truth() context["obj_world_pose"] = obj_pose context["robot_world_pose"] = robot_pose self._cam_step = 0 self._cam_choices = np.array([[-1.75, 0, 2], [-1.75, 0, 1.62], [-1.3, 1.7, 1.62]]) self._curr_cam_pos = self._cam_choices[0] for i in range(num_images): self._next_camera() self._forward() img = self._get_cam_frame() sequence["img"].append(img) cam_pos = self.cam_modder.get_pos("camera1") cam_quat = self.cam_modder.get_quat("camera1") cam_pose = np.concatenate([cam_pos, cam_quat]).astype(np.float32) sequence["cam_pose"].append(cam_pose) cam_id = self.cam_modder.get_camid("camera1") fovy = self.sim.model.cam_fovy[cam_id] width, height = 640, 480 f = 0.5 * height / math.tan(fovy * math.pi / 360) camera_intrinsics = np.array( ((f, 0, width / 2), (0, f, height / 2), (0, 0, 1))) context['cam_matrix'] = camera_intrinsics return context, sequence def _forward(self): """Advances simulator a step (NECESSARY TO MAKE CAMERA AND LIGHT MODDING WORK) And add some visualization""" self.sim.forward() if self.viewer and self.gui: # Get angle of camera and display it quat = np.quaternion(*self.model.cam_quat[0]) ypr = quaternion.as_euler_angles(quat) * 180 / np.pi cam_pos = self.model.cam_pos[0] cam_fovy = self.model.cam_fovy[0] #self.viewer.add_marker(pos=cam_pos, label="CAM: {}{}".format(cam_pos, ypr)) #self.viewer.add_marker(pos=cam_pos, label="CAM: {}".format(ypr)) #self.viewer.add_marker(pos=cam_pos, label="CAM: {}".format(cam_pos)) self.viewer.add_marker(pos=cam_pos, label="FOVY: {}, CAM: {}".format( cam_fovy, cam_pos)) self.viewer.render() def _get_ground_truth(self): """ Return the position to the robot, and quaternion to the robot quaternion 7 dim total """ robot_gid = self.sim.model.geom_name2id('base_link') obj_gid = self.sim.model.geom_name2id('object') # only x and y pos needed obj_world_pos = self.sim.data.geom_xpos[obj_gid] robot_world_pos = self.sim.data.geom_xpos[robot_gid] # obj_pos_in_robot_frame = (self.sim.data.geom_xpos[obj_gid] - self.sim.data.geom_xpos[robot_gid])[:2] # robot_quat = quaternion.as_quat_array(self.model.geom_quat[robot_gid].copy()) obj_world_quat = self.model.geom_quat[obj_gid].copy() robot_world_quat = self.model.geom_quat[robot_gid].copy() # # want quat of obj relative to robot frame # # obj_q = robot_q * localrot # # robot_q.inv * obj_q = localrot # rel_quat = quaternion.as_float_array(robot_quat.inverse() * obj_quat) # pose = np.concatenate([obj_pos_in_robot_frame, rel_quat]).astype(np.float32) obj_pose = self.sim.data.get_joint_qpos('object:joint').copy() robot_pose = np.concatenate([robot_world_pos, robot_world_quat]).astype(np.float32) return obj_pose, robot_pose def _get_cam_frame(self, ground_truth=None): """Grab an image from the camera (224, 244, 3) to feed into CNN""" #IMAGE_NOISE_RVARIANCE = Range(0.0, 0.0001) cam_img = self.sim.render( 640, 480, camera_name='camera1' )[::-1, :, :] # Rendered images are upside-down. # make camera crop be more like kinect #cam_img = self.sim.render(854, 480, camera_name='camera1')[::-1, 107:-107, :] # Rendered images are upside-down. #image_noise_variance = sample(IMAGE_NOISE_RVARIANCE) #cam_img = (skimage.util.random_noise(cam_img, mode='gaussian', var=image_noise_variance) * 255).astype(np.uint8) if self.display_data: print(ground_truth) #label = str(ground_truth[3:6]) display_image(cam_img, mode='preproc') #, label) # cam_img = preproc_image(cam_img) return cam_img def _randomize(self): self._rand_textures() self._rand_camera() self._rand_lights() #self._rand_robot() self._rand_object() self._rand_walls() self._rand_distract() def _rand_textures(self): """Randomize all the textures in the scene, including the skybox""" bright = np.random.binomial(1, 0.5) for name in self.sim.model.geom_names + ('skybox', ): self.tex_modder.rand_all(name) if bright: self.tex_modder.brighten(name, np.random.randint(0, 150)) def _rand_camera(self): """Randomize pos, orientation, and fov of camera real camera pos is -1.75, 0, 1.62 FOVY: Kinect2 is 53.8 ASUS is 45 https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/specifications/ http://smeenk.com/kinect-field-of-view-comparison/ """ # Params FOVY_R = Range(40, 50) #X = Range(-3, -1) #Y = Range(-1, 3) #Z = Range(1, 2) #C_R3D = Range3D(X, Y, Z) #cam_pos = sample_xyz(C_R3D) #L_R3D = rto3d([-0.1, 0.1]) C_R3D = Range3D([-0.07, 0.07], [-0.07, 0.07], [-0.07, 0.07]) ANG3 = Range3D([-3, 3], [-3, 3], [-3, 3]) # Look approximately at the robot, but then randomize the orientation around that cam_choices = np.array([[-1.75, 0, 1.62], [-1.3, 1.7, 1.62], [-1.75, 0, 2]]) cam_pos = cam_choices[np.random.choice(len(cam_choices))] # cam_pos = get_real_cam_pos(FLAGS.real_data_path) target_id = self.model.body_name2id(FLAGS.look_at) cam_off = 0 #sample_xyz(L_R3D) target_off = 0 #sample_xyz(L_R3D) quat = look_at(cam_pos + cam_off, self.sim.data.body_xpos[target_id] + target_off) quat = jitter_angle(quat, ANG3) #quat = jitter_quat(quat, 0.01) cam_pos += sample_xyz(C_R3D) self.cam_modder.set_quat('camera1', quat) self.cam_modder.set_pos('camera1', cam_pos) self.cam_modder.set_fovy('camera1', 60) # hard code to wide fovy def _next_camera(self): """Randomize pos, orientation, and fov of camera real camera pos is -1.75, 0, 1.62 FOVY: Kinect2 is 53.8 ASUS is 45 https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/specifications/ http://smeenk.com/kinect-field-of-view-comparison/ """ # Params FOVY_R = Range(40, 50) #X = Range(-3, -1) #Y = Range(-1, 3) #Z = Range(1, 2) #C_R3D = Range3D(X, Y, Z) #cam_pos = sample_xyz(C_R3D) #L_R3D = rto3d([-0.1, 0.1]) C_R3D = Range3D([-0.07, 0.07], [-0.07, 0.07], [-0.07, 0.07]) ANG3 = Range3D([-3, 3], [-3, 3], [-3, 3]) # Look approximately at the robot, but then randomize the orientation around that # linearly interpolate to the next camera every K steps K = 5 goal_cam_pos = self._cam_choices[(self._cam_step // K) + 1] offset = goal_cam_pos - self._curr_cam_pos offset *= (self._cam_step % K) / K self._curr_cam_pos += offset cam_pos = self._curr_cam_pos self._cam_step += 1 # cam_pos = cam_choices[np.random.choice(len(cam_choices))] # cam_pos = get_real_cam_pos(FLAGS.real_data_path) target_id = self.model.body_name2id(FLAGS.look_at) cam_off = 0 #sample_xyz(L_R3D) target_off = 0 #sample_xyz(L_R3D) quat = look_at(cam_pos + cam_off, self.sim.data.body_xpos[target_id] + target_off) quat = jitter_angle(quat, ANG3) #quat = jitter_quat(quat, 0.01) cam_pos += sample_xyz(C_R3D) self.cam_modder.set_quat('camera1', quat) self.cam_modder.set_pos('camera1', cam_pos) self.cam_modder.set_fovy('camera1', 60) # hard code to wide fovy def _rand_lights(self): """Randomize pos, direction, and lights""" # light stuff #X = Range(-1.5, 1.5) #Y = Range(-1.2, 1.2) #Z = Range(0, 2.8) X = Range(-1.5, -0.5) Y = Range(-0.6, 0.6) Z = Range(1.0, 1.5) LIGHT_R3D = Range3D(X, Y, Z) LIGHT_UNIF = Range3D(Range(0, 1), Range(0, 1), Range(0, 1)) # TODO: also try not altering the light dirs and just keeping them at like -1, or [0, -0.15, -1.0] for i, name in enumerate(self.model.light_names): lid = self.model.light_name2id(name) # random sample 80% of any given light being on if lid != 0: self.light_modder.set_active(name, sample([0, 1]) < 0.8) self.light_modder.set_dir(name, sample_light_dir()) self.light_modder.set_pos(name, sample_xyz(LIGHT_R3D)) #self.light_modder.set_dir(name, sample_xyz(rto3d([-1,1]))) #self.light_modder.set_specular(name, sample_xyz(LIGHT_UNIF)) #self.light_modder.set_diffuse(name, sample_xyz(LIGHT_UNIF)) #self.light_modder.set_ambient(name, sample_xyz(LIGHT_UNIF)) spec = np.array([sample(Range(0.5, 1))] * 3) diffuse = np.array([sample(Range(0.5, 1))] * 3) ambient = np.array([sample(Range(0.5, 1))] * 3) self.light_modder.set_specular(name, spec) self.light_modder.set_diffuse(name, diffuse) self.light_modder.set_ambient(name, ambient) #self.model.light_directional[lid] = sample([0,1]) < 0.2 self.model.light_castshadow[lid] = sample([0, 1]) < 0.5 def _rand_robot(self): """Randomize joint angles and jitter orientation""" jnt_shape = self.sim.data.qpos.shape self.sim.data.qpos[:] = sample_joints(self.model.jnt_range, jnt_shape) robot_gid = self.model.geom_name2id('robot_table_link') self.model.geom_quat[robot_gid] = jitter_quat( self.START_GEOM_QUAT[robot_gid], 0.01) def _rand_object(self): obj_gid = self.sim.model.geom_name2id('object') obj_bid = self.sim.model.geom_name2id('object') table_gid = self.model.geom_name2id('object_table') table_bid = self.model.body_name2id('object_table') obj_pose = self.start_obj_pose.copy() xval = self.model.geom_size[table_gid][ 0] #- self.model.geom_size[obj_gid][0] yval = self.model.geom_size[table_gid][ 1] #- self.model.geom_size[obj_gid][1] O_X = Range(-xval, xval) O_Y = Range(-yval, yval) O_Z = Range(0, 0) O_R3D = Range3D(O_X, O_Y, O_Z) newpos = obj_pose[:3] + sample_xyz(O_R3D) newquat = jitter_quat(obj_pose[3:], 0.1) obj_pose[:3] = newpos obj_pose[3:] = newquat self.sim.data.set_joint_qpos('object:joint', obj_pose) #T_X = Range(-0.1, 0.1) #T_Y = Range(-0.1, 0.1) #T_Z = Range(-0.1, 0.1) #T_R3D = Range3D(T_X, T_Y, T_Z) #self.model.body_pos[table_bid] = self.START_BODY_POS[table_bid] + sample_xyz(T_R3D) ## randomize orientation a wee bit #self.model.geom_quat[table_gid] = jitter_quat(self.START_GEOM_QUAT[table_gid], 0.01) def _rand_walls(self): wall_bids = { name: self.model.body_name2id(name) for name in ['wall_' + dir for dir in 'nesw'] } window_gid = self.model.geom_name2id('west_window') #floor_gid = self.model.geom_name2id('floor') WA_X = Range(-0.2, 0.2) WA_Y = Range(-0.2, 0.2) WA_Z = Range(-0.1, 0.1) WA_R3D = Range3D(WA_X, WA_Y, WA_Z) WI_X = Range(-0.1, 0.1) WI_Y = Range(0, 0) WI_Z = Range(-0.5, 0.5) WI_R3D = Range3D(WI_X, WI_Y, WI_Z) R = Range(0, 0) P = Range(-10, 10) Y = Range(0, 0) RPY_R = Range3D(R, P, Y) #self.model.geom_quat[floor_gid] = jitter_quat(self.START_GEOM_QUAT[floor_gid], 0.01) #self.model.geom_pos[floor_gid] = self.START_GEOM_POS[floor_gid] + [0,0,sample(-0.1,0.1) self.model.geom_quat[window_gid] = sample_quat(RPY_R) #self.model.geom_quat[window_gid] = jitter_quat(self.START_GEOM_QUAT[window_gid], 0.01) self.model.geom_pos[ window_gid] = self.START_GEOM_POS[window_gid] + sample_xyz(WI_R3D) for name in wall_bids: gid = wall_bids[name] self.model.body_quat[gid] = jitter_quat(self.START_BODY_QUAT[gid], 0.01) self.model.body_pos[gid] = self.START_BODY_POS[gid] + sample_xyz( WA_R3D) def _rand_distract(self): PREFIX = 'distract' geom_names = [ name for name in self.model.geom_names if name.startswith(PREFIX) ] # Size range SX = Range(0.01, 0.5) SY = Range(0.01, 0.9) SZ = Range(0.01, 0.5) S3D = Range3D(SX, SY, SZ) # Back range B_PX = Range(-0.5, 2) B_PY = Range(-1.5, 2) B_PZ = Range(0, 3) B_P3D = Range3D(B_PX, B_PY, B_PZ) # Front range F_PX = Range(-2, -0.5) F_PY = Range(-2, 1) F_PZ = Range(0, 0.5) F_P3D = Range3D(F_PX, F_PY, F_PZ) for name in geom_names: gid = self.model.geom_name2id(name) range = B_P3D if np.random.binomial(1, 0.5) else F_P3D self.model.geom_pos[gid] = sample_xyz(range) self.model.geom_quat[gid] = random_quat() self.model.geom_size[gid] = sample_xyz(S3D, mode='logspace') self.model.geom_type[gid] = sample_geom_type() self.model.geom_rgba[gid][-1] = np.random.binomial(1, 0.5) def _set_visible(self, prefix, range_top, visible): """Helper function to set visibility of several objects""" if not visible: if range_top == 0: name = prefix gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 0.0 for i in range(range_top): name = "{}{}".format(prefix, i) gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 0.0 else: if range_top == 0: name = prefix gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 1.0 for i in range(range_top): name = "{}{}".format(prefix, i) gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 1.0
def __init__(self, FLAGS): super().__init__(FLAGS) if self.FLAGS['baxter']: self.robot_offset = lambda: self.model.body_pos[self.name2bid( 'base_ground')] else: self.robot_offset = lambda: self.model.body_pos[self.name2bid( 'robot_table_floor')] self.table_center = lambda: TABLES[self.FLAGS['default_table']][ 'pos'] + self.robot_offset( ) + [0, 0, TABLES[self.FLAGS['default_table']]['wood'][2]] self.LIGHT = { 'ambient': self.model.light_ambient, 'active': self.model.light_active, 'castshadow': self.model.light_castshadow, 'diffuse': self.model.light_diffuse, 'dir': self.model.light_dir, 'pos': self.model.light_pos, 'specular': self.model.light_specular } self.START_BODY_POS = self.model.body_pos.copy() self.START_LIGHT = {} for key in self.LIGHT: self.START_LIGHT[key] = self.LIGHT[key].copy() self.tex_modder = TextureModder(self.sim) self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim) if self.FLAGS['domrand']: self.tex_modder.whiten_materials() self.goal = {} # mean camera position defined relative to table center if FLAGS['baxter']: self.CAMERA_POS_MEAN = np.array([-0.64, 0.025, 1.0]) else: self.CAMERA_POS_MEAN = np.array([-0.65, 0.0, 0.68]) # establish values for discretizing self.X = self.FLAGS['ACTS']['x'] self.Y = self.FLAGS['ACTS']['y'] self.YAW = self.FLAGS['ACTS']['yaw'] self.DIST = self.FLAGS['ACTS']['dist'] self.action_space = self.FLAGS['action_space'] self.observation_space = self.FLAGS['observation_space'] if self.FLAGS['goal_conditioned']: self.goal['array'] = np.zeros(self.FLAGS['state_shape']) if self.FLAGS['use_image']: self.goal['image'] = np.zeros(self.FLAGS['image_shape']) self.paddle_bid = self.name2bid('paddle') self.paddle_gid = self.name2gid('paddle') self.N = int( 0.5 / self.dt) # N should correspond to about 0.5 seconds of timestep self.consecutive_fences = 0 self.escape_count = 0 self._set_invisiwall() self._reset_sim()
class ObjectCollectionEnv(BaseEnv): """Custom muluti-object environment""" def __init__(self, FLAGS): super().__init__(FLAGS) if self.FLAGS['baxter']: self.robot_offset = lambda: self.model.body_pos[self.name2bid( 'base_ground')] else: self.robot_offset = lambda: self.model.body_pos[self.name2bid( 'robot_table_floor')] self.table_center = lambda: TABLES[self.FLAGS['default_table']][ 'pos'] + self.robot_offset( ) + [0, 0, TABLES[self.FLAGS['default_table']]['wood'][2]] self.LIGHT = { 'ambient': self.model.light_ambient, 'active': self.model.light_active, 'castshadow': self.model.light_castshadow, 'diffuse': self.model.light_diffuse, 'dir': self.model.light_dir, 'pos': self.model.light_pos, 'specular': self.model.light_specular } self.START_BODY_POS = self.model.body_pos.copy() self.START_LIGHT = {} for key in self.LIGHT: self.START_LIGHT[key] = self.LIGHT[key].copy() self.tex_modder = TextureModder(self.sim) self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim) if self.FLAGS['domrand']: self.tex_modder.whiten_materials() self.goal = {} # mean camera position defined relative to table center if FLAGS['baxter']: self.CAMERA_POS_MEAN = np.array([-0.64, 0.025, 1.0]) else: self.CAMERA_POS_MEAN = np.array([-0.65, 0.0, 0.68]) # establish values for discretizing self.X = self.FLAGS['ACTS']['x'] self.Y = self.FLAGS['ACTS']['y'] self.YAW = self.FLAGS['ACTS']['yaw'] self.DIST = self.FLAGS['ACTS']['dist'] self.action_space = self.FLAGS['action_space'] self.observation_space = self.FLAGS['observation_space'] if self.FLAGS['goal_conditioned']: self.goal['array'] = np.zeros(self.FLAGS['state_shape']) if self.FLAGS['use_image']: self.goal['image'] = np.zeros(self.FLAGS['image_shape']) self.paddle_bid = self.name2bid('paddle') self.paddle_gid = self.name2gid('paddle') self.N = int( 0.5 / self.dt) # N should correspond to about 0.5 seconds of timestep self.consecutive_fences = 0 self.escape_count = 0 self._set_invisiwall() self._reset_sim() #self.viewer.add_marker(pos=cam_pos, label="CAM: {}".format(cam_pos)) def _get_object_poses(self): objs = [] for i in range(self.FLAGS['num_objects']): obj = 'object{}:joint'.format(i) pose = self.sim.data.get_joint_qpos(obj).copy() pose[:3] -= self.table_center() if not self.FLAGS['use_quat']: pose = pose[:3] objs.append(pose) objs = np.stack(objs) return objs def _get_obs(self): self.sim.step() array = self._get_object_poses() obs = {'array': array, 'single': np.zeros(4)} if self.FLAGS['use_image']: image = self._get_cam_frame().astype(np.float32) image = cv2.resize(image, self.FLAGS['image_shape'][:2], interpolation=cv2.INTER_AREA) image /= 255.0 obs.update({'image': image}) if self.FLAGS['goal_conditioned']: obs.update({'goal_array': self.goal['array']}) if self.FLAGS['use_image']: obs.update({'goal_image': self.goal['image']}) return obs def _geofence_escape(self): """check if any of the cubes have escaped the table. this should not be possible but still happens due to some glitch with mujoco return True if any cube escapes """ cubes = self._get_object_poses() cube_size = self.sim.model.geom_size[self.name2gid('object0')] table_range = 0.5 * TABLES[self.FLAGS['default_table']]['wood'] table_range[ 2] = 0.1 # be forgiving on the height, since we already have object_fell to check for drops table_box = (1 + 0.01) * np.stack([-table_range, table_range], axis=-1) for c in cubes: cube_box = c[:3, None] + np.stack([-cube_size, cube_size], axis=-1) if not overlap3D(cube_box, table_box): return True return False def _object_fell(self): """check if any of the cubes have fallen off the table""" cubes = self._get_object_poses() for c in cubes: if c[2] < -0.01: return True return False def step(self, action): # convert from tuple to dictionary. this is pretty risky and bad practice, but should throw errors for shape mismatch in most cases *crosses fingers* if isinstance(action, tuple) or isinstance(action, np.ndarray): names = ['x', 'y', 'yaw'] names += ['dist'] if self.FLAGS['use_dist'] else [] sorted_names = list(sorted(names)) action = { sorted_names[i]: action[i] for i in range(len(sorted_names)) } action = copy.deepcopy(action) safe_action = self._set_action(action) reward = 0.0 if self._geofence_escape() or self._object_fell(): reward += -10.0 done = True print('AHHH') else: done = False obs = self._get_obs() if self.FLAGS['penalize_invisiwall'] and safe_action != '': if 'wall' in safe_action: reward += -1.0 info = {'seed': self.current_seed} out_obs = self.get_out_obs() return out_obs, reward, done, info def _set_action(self, action): """Apply the action to the env Return True is safe action, else false """ self._randomize() contact_invisiwall = False if self.FLAGS['discrete']: x = self.X[action['x']] y = self.Y[action['y']] yaw = self.YAW[action['yaw']] if self.FLAGS['use_dist']: dist = self.DIST[1 + action['dist']] else: dist = self.FLAGS['max_dx'] else: spaces = self.action_space.spaces def clip_act(key): """clip and then map back to semantic action scale""" clipped = np.clip(action[key], -1.0, 1.0) return unmap_continuous(key, clipped, self.FLAGS) x = clip_act('x') y = clip_act('y') yaw = clip_act('yaw') if self.FLAGS['use_dist']: dist = clip_act('dist') else: dist = self.FLAGS['max_dx'] # Parse action s_xyz = np.array([x, y, 0.5]) s_xyz += self.table_center() self.model.geom_pos[self.paddle_gid] = s_xyz self.sim.data.geom_xpos[self.paddle_gid] = s_xyz quat = quaternion.from_euler_angles(0, 0, yaw).normalized().components self.sim.model.geom_quat[self.paddle_gid] = quat xp_aid = self.model.actuator_name2id('xp') xv_aid = self.model.actuator_name2id('xv') yp_aid = self.model.actuator_name2id('yp') yv_aid = self.model.actuator_name2id('yv') zp_aid = self.model.actuator_name2id('zp') zv_aid = self.model.actuator_name2id('zv') self.sim.data.set_joint_qpos('paddle:slidex', np.array([0])) self.sim.data.set_joint_qpos('paddle:slidey', np.array([0])) self.sim.data.set_joint_qpos('paddle:slidez', np.array([0])) self.sim.data.set_joint_qpos('paddle:hingez', np.array([0])) self.sim.data.ctrl[:] = 0.0 # Set goal positions of paddle (lower to targetz, then push to targetx and targety based on action) if self.FLAGS['baxter']: targetz = -0.925 + 0.83 else: targetz = 0.69 targetx, targety = s_xyz[0] + np.cos(yaw) * dist, s_xyz[1] + np.sin( yaw) * dist # reverse push at the end so that we are not in contact with block when we lift. btargetx, btargety = s_xyz[0] + np.cos(yaw) * ( 0.5 * dist), s_xyz[1] + np.sin(yaw) * (0.5 * dist) # Draw indicator of paddle target pos target = np.array([targetx, targety, targetz]) site_id = self.name2sid('target0') self.sim.model.site_rgba[site_id] = np.zeros(4) if self.FLAGS['render']: self.sim.model.site_pos[site_id] = target self.sim.model.site_quat[site_id] = quat # Vertical PID controller to lower and raise P = 400.0 D = 40.0 v_pid = PID( P, D, curr_fn=lambda: self.sim.data.geom_xpos[self.paddle_gid][2], goal=targetz) # Horizontal (xy) PID controllers to push HP = 600.0 HD = 60.0 hx_pid = PID( HP, HD, curr_fn=lambda: self.sim.data.geom_xpos[self.paddle_gid][0], goal=targetx) hy_pid = PID( HP, HD, curr_fn=lambda: self.sim.data.geom_xpos[self.paddle_gid][1], goal=targety) # Lower the paddle for i in range(self.N): self.sim.data.ctrl[zp_aid], self.sim.data.ctrl[ zv_aid] = v_pid.step() self.sim.step() contact_invisiwall = contact_invisiwall or self._collide_wall() if self.FLAGS['render']: self.viewer.render() # Push forward to the target position for i in range(int(1.5 * self.N)): #self.sim.data.ctrl[zp_aid], self.sim.data.ctrl[zv_aid] = v_pid.step() self.sim.data.ctrl[xp_aid], self.sim.data.ctrl[ xv_aid] = hx_pid.step() self.sim.data.ctrl[yp_aid], self.sim.data.ctrl[ yv_aid] = hy_pid.step() contact_invisiwall = contact_invisiwall or self._collide_wall() self.sim.step() if self.FLAGS['render']: self.viewer.render() # Reverse a bit hx_pid.reset_goal(btargetx) hy_pid.reset_goal(btargety) for i in range(int(0.1 * self.N)): #self.sim.data.ctrl[zp_aid], self.sim.data.ctrl[zv_aid] = v_pid.step() self.sim.data.ctrl[xp_aid], self.sim.data.ctrl[ xv_aid] = hx_pid.step() self.sim.data.ctrl[yp_aid], self.sim.data.ctrl[ yv_aid] = hy_pid.step() contact_invisiwall = contact_invisiwall or self._collide_wall() self.sim.step() if self.FLAGS['render']: self.viewer.render() # Raise the paddle back up after pushing v_pid.reset_goal(1.5) for i in range(self.N * 3): self.sim.data.ctrl[zp_aid], self.sim.data.ctrl[ zv_aid] = v_pid.step() self.sim.data.ctrl[xp_aid], self.sim.data.ctrl[ xv_aid] = hx_pid.step() self.sim.data.ctrl[yp_aid], self.sim.data.ctrl[ yv_aid] = hy_pid.step() contact_invisiwall = contact_invisiwall or self._collide_wall() self.sim.step() if self.FLAGS['render']: self.viewer.render() if self.FLAGS['penalize_invisiwall'] and contact_invisiwall: safe = 'wall' else: safe = '' return safe def reset(self): self.goal = self._sample_goal() did_reset_sim = False while not did_reset_sim: did_reset_sim = self._reset_sim( reset_mode=self.np_random.choice(self.FLAGS['reset_mode'])) curr = self._get_obs()['array'] if self.FLAGS['render'] and self.FLAGS['goal_conditioned']: goal_array = self.goal['array'] * 0.5 * TABLES[ self.FLAGS['default_table']]['wood'][:2] site_dests = np.c_[goal_array, curr[:, 2]] + self.table_center() for i in range(self.FLAGS['num_objects']): site = self.name2sid('object{}'.format(i)) if self.FLAGS['render']: self.model.site_pos[site] = site_dests[i] - [0.0, 0.0, 0.1] self.model.site_rgba[site] = np.ones(4) return self.get_out_obs() def _collide_wall(self): wall_gids = [self.name2gid('invisiwall_' + str(i)) for i in range(4)] obj_gids = [ self.name2gid('object' + str(i)) for i in range(self.FLAGS['num_objects']) ] bad_contacts = [ 1 for cc in self.sim.data.contact if (cc.geom1 in wall_gids and cc.geom2 in obj_gids) or ( cc.geom1 in obj_gids and cc.geom2 in wall_gids) ] return len(bad_contacts) > 0 def _set_invisiwall(self): # NOTE: Generally changing the shape of objects does not do well for contacts X = self.FLAGS['ACTS']['x'] Y = self.FLAGS['ACTS']['y'] DEPTH, Z = self.model.geom_size[self.name2gid('invisiwall_0')][1:] Z -= (Z / 2) idx = 0 for dir in [0, -1]: for xy in ['x', 'y']: gid = self.name2gid('invisiwall_' + str(idx)) if self.FLAGS['view_invisiwall']: pass else: self.model.geom_rgba[gid] = np.zeros((4, )) if xy == 'x': yval = 1.05 * np.sign(Y[dir]) * (np.abs(Y[dir]) + DEPTH) self.model.geom_pos[gid] = self.table_center() + np.array( [0, yval, Z]) #self.model.geom_size[gid] = np.array([X, DEPTH, Z]) else: xval = 1.05 * np.sign(X[dir]) * (np.abs(X[dir]) + DEPTH) self.model.geom_pos[gid] = self.table_center() + np.array( [xval, 0, Z]) #self.model.geom_size[gid] = np.array([DEPTH, Y, Z]) idx += 1 self.sim.forward() self.sim.step() def _sample_xyzs(self, reset_mode=None): reset_mode = reset_mode or 'cluster' #self.FLAGS['reset_mode'] object_xyzs = [] # for checking collisions against sample_range = R3D(self.FLAGS['obj_rangex'], self.FLAGS['obj_rangey'], R(0, 0)) if reset_mode == 'uniform': for i in range(self.FLAGS['num_objects']): while True: object_xyz = sim_utils.sample_xyz(self.np_random, sample_range) collision = False # TODO: check if this is necessary. could get speedup for other in object_xyzs: collision = collision or np.linalg.norm( object_xyz[:2] - other[:2]) < 0.0127 if not collision and sim_utils.in_range( object_xyz[0], self.FLAGS['obj_rangex']) and sim_utils.in_range( object_xyz[1], self.FLAGS['obj_rangey']): object_xyzs.append(object_xyz) break elif reset_mode == 'cluster': diameter = self.model.geom_size[self.name2gid('object0')][0] dirs = list( itertools.product([-diameter * 2, 0.0, diameter * 2], [-diameter * 2, 0.0, diameter * 2])) first_object_xyz = sim_utils.sample_xyz(self.np_random, sample_range) object_xyzs.append(first_object_xyz) for i in range(1, self.FLAGS['num_objects']): while True: reference = object_xyzs[self.np_random.randint( len(object_xyzs))] dir = np.array(dirs[self.np_random.randint(len(dirs))]) dir *= self.np_random.uniform(1.0, 2.0) xyz = reference.copy() xyz[:2] = reference[:2] + dir collision = False for other in object_xyzs: collision = collision or np.linalg.norm( xyz[:2] - other[:2]) < 0.0127 if not collision and sim_utils.in_range( xyz[0], self.FLAGS['obj_rangex']) and sim_utils.in_range( xyz[1], self.FLAGS['obj_rangey']): object_xyzs.append(xyz) break return object_xyzs def _sample_object_poses(self, reset_mode=None): #rstate = np.random.RandomState(seed=0) # use this to always reset to deterministic state xyz = self._sample_xyzs(reset_mode=reset_mode) for i in range(self.FLAGS['num_objects']): gid = self.name2gid('object{}'.format(i)) #self.model.geom_size[gid] = self.FLAGS['cube_size'] obj = 'object{}:joint'.format(i) object_qpos = self.sim.data.get_joint_qpos(obj) assert object_qpos.shape == (7, ) object_xpos = self.table_center() + [0.0, 0.0, 0.2] + xyz[i] object_quat = sim_utils.sample_quat( self.np_random, R3D(R(0, 180), R(0, 0), R(0, 0))) object_qpos = np.concatenate([object_xpos, object_quat]) self.sim.data.set_joint_qpos(obj, object_qpos) def _reset_sim(self, reset_mode=None): self.object_has_fallen = False self.object_fallen_stuff = None self.sim.set_state(self.initial_state) if self.FLAGS['baxter']: set_table(self.model, 'object_table', 'folding', self.FLAGS) else: set_table(self.model, 'robot_table', 'robot', self.FLAGS) set_table(self.model, 'object_table', 'small', self.FLAGS) self.model.site_size[self.name2sid('target0')] = self.model.geom_size[ self.paddle_gid] self.cam_pos = self.model.cam_pos[0] = self.table_center() + np.array( [-0.75, 0.0, 0.75]) target_pos = self.sim.data.body_xpos[self.name2bid('object_table')] self.model.cam_quat[0] = look_at(self.cam_pos, target_pos) # reset objects self._sample_object_poses(reset_mode=reset_mode) for i in range(5 * self.N): self.sim.step() if self.FLAGS['render']: self.viewer.render() return not self._object_fell() and not self._geofence_escape() def _sample_goal(self): """NOTE: must be called before reset, as this can mess with state""" goal = {} if self.FLAGS['goal_conditioned']: # Same mechanism for resetting sim, in order to get to a random state did_reset_sim = False while not did_reset_sim: did_reset_sim = self._reset_sim(reset_mode='cluster') obs = self._get_obs() obs['array'][:, :3] /= ( 0.5 * TABLES[self.FLAGS['default_table']]['wood']) if not self.FLAGS['use_quat']: obs['array'] = obs['array'][..., :2] goal['array'] = copy.deepcopy(obs['array']) if self.FLAGS['use_image']: goal['image'] = copy.deepcopy(obs['image']) return goal else: sample_range = R3D(self.FLAGS['obj_rangex'], self.FLAGS['obj_rangey'], R(0, 0)) goal['array'] = sim_utils.sample_xyz(self.np_random, sample_range) return goal def get_out_obs(self): """This matches the observation space. The other one is just for internal use""" obs = self._get_obs() obs['array'][:, :3] /= (0.5 * TABLES[self.FLAGS['default_table']]['wood']) if not self.FLAGS['use_quat']: obs['array'] = obs['array'][..., :2] obs_names = ['array', 'single'] if self.FLAGS['goal_conditioned']: assert not np.all(np.equal(obs['goal_array'], 0.0)), "goal was not set before out_obs" obs_names.append('goal_array') if self.FLAGS['use_image']: obs_names.append('goal_image') if self.FLAGS['use_image']: obs_names.append('image') if self.FLAGS['use_canonical']: obs_names.append('canonical') self._canonicalize() self.sim.step() canon_obs = self._get_obs() obs['canonical'] = canon_obs['image'] for key in obs: obs[key] = obs[key].astype(np.float32) out_obs = copy.deepcopy(tuple([obs[key] for key in sorted(obs_names)])) #print(obs['array']) #print() if np.max(np.abs(obs['array'])) > 1.01: print('AHHH out obs', obs['array']) return out_obs def _canonicalize(self): # Canonicalize textures for name in self.model.geom_names + ('skybox', ): if re.match('object\d', name) is not None: self.tex_modder.set_rgb( name, np.array([255, 0, 255], dtype=np.uint8)) else: self.tex_modder.set_rgb(name, np.array([255] * 3, dtype=np.uint8)) # light for key in self.LIGHT: self.LIGHT[key][:] = self.START_LIGHT[key].copy() # camera if self.FLAGS['mild_canonical']: self.cam_pos = self.CAMERA_POS_MEAN + self.table_center() else: self.cam_pos = self.CAMERA_POS_MEAN + self.table_center() + [ 0.639, -0.025, 0.125 ] target_id = self.model.body_name2id('object_table') target_pos = self.sim.data.body_xpos[ target_id] #+ sim_utils.sample_xyz(self.np_random, R3D(R(-0.05, 0.05), R(-0.05, 0.05), R(0.1,0.1))) quat = look_at(self.cam_pos, target_pos) self.cam_modder.set_quat('camera1', quat) self.cam_modder.set_pos('camera1', self.cam_pos) self.cam_modder.set_fovy('camera1', 45) # robot if self.FLAGS['baxter']: for name in self.model.joint_names: if 'paddle' not in name and 'object' not in name: id = self.sim.model.joint_name2id(name) self.sim.data.set_joint_qpos(name, 0.0) #self.model.body_pos[self.name2bid('base')] = self.START_BODY_POS[self.name2bid('base')] else: for joint in ['lbr4_j{}'.format(i) for i in range(7)]: id = self.sim.model.joint_name2id(joint) self.sim.data.set_joint_qpos(joint, 0.0) PREFIX = 'distract' geom_names = [ name for name in self.model.geom_names if name.startswith(PREFIX) ] for name in geom_names: gid = self.model.geom_name2id(name) self.model.geom_pos[gid] = np.array([0, 0, -2]) self.model.geom_rgba[gid][-1] = 0 def _randomize(self): if self.FLAGS['domrand']: self._rand_textures() self._rand_camera() self._rand_lights() #self._rand_robot() self._rand_distract() else: self._canonicalize() def _rand_textures(self): """Randomize all the textures in the scene, including the skybox""" bright = self.np_random.binomial(1, 0.8) for name in self.sim.model.geom_names + ('skybox', ): self.tex_modder.rand_all(name) if bright: if name == 'object_table': self.tex_modder.brighten(name, self.np_random.randint(150, 255)) else: self.tex_modder.brighten(name, self.np_random.randint(0, 150)) def _rand_camera(self): """Randomize pos, orientation, and fov of camera FOVY: Kinect2 is 53.8 ASUS is 45 https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/specifications/ http://smeenk.com/kinect-field-of-view-comparison/ """ dx = 0.05 self.cam_pos = self.CAMERA_POS_MEAN + self.table_center() C_R3D = R3D(R(-dx, dx), R(-dx, dx), R(-2 * dx, 2 * dx)) self.cam_pos += sim_utils.sample_xyz(self.np_random, C_R3D) self._rand_camera_angle() self.cam_modder.set_pos('camera1', self.cam_pos) self.cam_modder.set_fovy('camera1', sim_utils.sample(self.np_random, R(44, 46))) def _rand_camera_angle(self): # Look approximately at the robot target_id = self.model.body_name2id('object_table') target_pos = self.sim.data.body_xpos[target_id] + sim_utils.sample_xyz( self.np_random, R3D(R(-0.02, 0.02), R(-0.02, 0.02), R(0.0, 0.2))) quat = look_at(self.cam_pos, target_pos) self.cam_modder.set_quat('camera1', quat) def _rand_lights(self): """Randomize pos, direction, and lights""" # light stuff X = R(-1.0, 1.0) Y = R(-0.6, 0.6) Z = R(0.1, 1.5) LIGHT_R3D = self.table_center()[:, None] + R3D(X, Y, Z) LIGHT_UNIF = R3D(R(0, 1), R(0, 1), R(0, 1)) for i, name in enumerate(self.model.light_names): lid = self.model.light_name2id(name) # random sample 80% of any given light being on if lid != 0: self.light_modder.set_active( name, sim_utils.sample(self.np_random, [0, 1]) < 0.8) self.light_modder.set_dir( name, sim_utils.sample_light_dir(self.np_random)) self.light_modder.set_pos( name, sim_utils.sample_xyz(self.np_random, LIGHT_R3D)) spec = np.array([sim_utils.sample(self.np_random, R(0.5, 1))] * 3) diffuse = np.array([sim_utils.sample(self.np_random, R(0.5, 1))] * 3) ambient = np.array([sim_utils.sample(self.np_random, R(0.5, 1))] * 3) self.light_modder.set_specular(name, spec) self.light_modder.set_diffuse(name, diffuse) self.light_modder.set_ambient(name, ambient) self.model.light_castshadow[lid] = sim_utils.sample( self.np_random, [0, 1]) < 0.5 def _rand_robot(self): """Randomize joint angles""" if self.FLAGS['baxter']: for name in self.model.joint_names: if 'paddle' not in name and 'object' not in name: id = self.sim.model.joint_name2id(name) self.sim.data.set_joint_qpos( name, sim_utils.sample(self.np_random, self.model.jnt_range[id])) self.model.body_pos[self.name2bid('base')] = self.START_BODY_POS[ self.name2bid('base')] + sim_utils.sample_xyz( self.np_random, R3D(R(0, 0), R(0, 0), R(-0.05, 0.05))) else: for name in ['lbr4_j{}'.format(i) for i in range(7)]: id = self.sim.model.joint_name2id(name) self.sim.data.set_joint_qpos( name, sim_utils.sample(self.np_random, self.model.jnt_range[id])) def _rand_distract(self): """Randomize the position and size of the distractor objects""" PREFIX = 'distract' geom_names = [ name for name in self.model.geom_names if name.startswith(PREFIX) ] # Size range SX = R(0.01, 0.3) SY = R(0.01, 0.3) SZ = R(0.01, 0.3) S3D = R3D(SX, SY, SZ) # Back range B_PX = R(0.5, 1.0) B_PY = R(-2, 2) B_PZ = R(0.1, 0.5) B_P3D = R3D(B_PX, B_PY, B_PZ) # Front range F_PX = R(-0.5, 0.5) F_PY = R(-2, 2) F_PZ = R(-0.1, 0.3) F_P3D = R3D(F_PX, F_PY, F_PZ) for name in geom_names: gid = self.model.geom_name2id(name) range = B_P3D if np.random.binomial(1, 0.5) else F_P3D mid = self.table_center().copy() mid[2] = -0.925 self.model.geom_pos[gid] = mid + sim_utils.sample_xyz( self.np_random, range) self.model.geom_quat[gid] = sim_utils.random_quat(self.np_random) self.model.geom_size[gid] = sim_utils.sample_xyz( self.np_random, S3D) self.model.geom_type[gid] = sim_utils.sample_geom_type( self.np_random) self.model.geom_rgba[gid][-1] = np.random.binomial(1, 0.5)
class RobotEnv(gym.GoalEnv): def __init__(self, model_path, initial_qpos, n_actions, n_substeps, mode, visual_randomize, visual_data_recording): if model_path.startswith('/'): fullpath = model_path else: fullpath = os.path.join(os.path.dirname(__file__), 'assets', model_path) if not os.path.exists(fullpath): raise IOError('File {} does not exist'.format(fullpath)) self.mode = mode model = mujoco_py.load_model_from_path(fullpath) self.sim = mujoco_py.MjSim(model, nsubsteps=n_substeps) self.viewer = None # comment when using "human" self._viewers = {} self.modder = TextureModder(self.sim) self.visual_randomize = visual_randomize self.mat_modder = MaterialModder(self.sim) self.light_modder = LightModder(self.sim) self.camera_modder = CameraModder(self.sim) self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self.visual_data_recording = visual_data_recording self._index = 0 self._label_matrix = [] self.seed() self._env_setup(initial_qpos=initial_qpos) self.initial_state = copy.deepcopy(self.sim.get_state()) self.goal = self._sample_goal() obs = self._get_obs() self.action_space = spaces.Box(-1., 1., shape=(n_actions,), dtype='float32') self.observation_space = spaces.Dict(dict( desired_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), achieved_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), observation=spaces.Box(-np.inf, np.inf, shape=obs['observation'].shape, dtype='float32'), )) if self.viewer: self._viewer_setup() @property def dt(self): return self.sim.model.opt.timestep * self.sim.nsubsteps # Env methods # ---------------------------- def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): if self.visual_randomize: for name in self.sim.model.geom_names: self.modder.whiten_materials() self.modder.set_checker(name, (255, 0, 0), (0, 0, 0)) self.modder.rand_all(name) self.mat_modder.rand_all(name) self.modder.set_checker('skin', (255, 0, 0), (0, 0, 0)) self.modder.rand_all('skin') self.light_modder.rand_all('light0') self.light_modder.rand_all('light1') self.light_modder.rand_all('light2') self.light_modder.rand_all('light3') self.camera_modder.rand_fovy('camera1') self.camera_modder.rand_pos('camera1') self.camera_modder.rand_quat('camera1', factor=[0.1, 0.1, 0.1]) action = np.clip(action, self.action_space.low, self.action_space.high) self._set_action(action) self.sim.step() self._step_callback() obs = self._get_obs() done = False info = { 'is_success': self._is_success(obs['achieved_goal'], self.goal), } reward = self.compute_reward(obs['achieved_goal'], self.goal, info) #print("REWARD", reward ," and IS SUCCESS ", info['is_success']) return obs, reward, done, info def reset(self): # Attempt to reset the simulator. Since we randomize initial conditions, it # is possible to get into a state with numerical issues (e.g. due to penetration or # Gimbel lock) or we may not achieve an initial condition (e.g. an object is within the hand). # In this case, we just keep randomizing until we eventually achieve a valid initial # configuration. super(RobotEnv, self).reset() did_reset_sim = False while not did_reset_sim: did_reset_sim = self._reset_sim() # if self.visual_randomize: # for name in self.sim.model.geom_names: # self.modder.whiten_materials() # self.modder.set_checker(name, (255, 0, 0), (0, 0, 0)) # self.modder.rand_all(name) # self.mat_modder.rand_all(name) # self.modder.set_checker('skin', (255, 0, 0), (0, 0, 0)) # self.modder.rand_all('skin') self.goal = self._sample_goal().copy() obs = self._get_obs() return obs def close(self): if self.viewer is not None: # self.viewer.finish() self.viewer = None self._viewers = {} def render(self, mode='human', width=DEFAULT_SIZE, height=DEFAULT_SIZE): self._render_callback() if mode == 'rgb_array': self._get_viewer(mode).render(width, height) # window size used for old mujoco-py: data = self._get_viewer(mode).read_pixels(width, height, depth=False) # original image is upside-down, so flip it return data[::-1, :, :] #return None elif mode == 'human': self._get_viewer(mode).render() def _get_viewer(self, mode): self.viewer = self._viewers.get(mode) if self.viewer is None: if mode == 'human': self.viewer = mujoco_py.MjViewer(self.sim) elif mode == 'rgb_array': device_id = self.sim.model.camera_name2id('camera1') self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, device_id=device_id) self._viewer_setup() self._viewers[mode] = self.viewer return self.viewer # Extension methods # ---------------------------- def _reset_sim(self): """Resets a simulation and indicates whether or not it was successful. If a reset was unsuccessful (e.g. if a randomized state caused an error in the simulation), this method should indicate such a failure by returning False. In such a case, this method will be called again to attempt a the reset again. """ self.sim.set_state(self.initial_state) self.sim.forward() return True def _get_obs(self): """Returns the observation. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _is_success(self, achieved_goal, desired_goal): """Indicates whether or not the achieved goal successfully achieved the desired goal. """ raise NotImplementedError() def _sample_goal(self): """Samples a new goal and returns it. """ raise NotImplementedError() def _env_setup(self, initial_qpos): """Initial configuration of the environment. Can be used to configure initial state and extract information from the simulation. """ pass def _viewer_setup(self): """Initial configuration of the viewer. Can be used to set the camera position, for example. """ pass def _render_callback(self): """A custom callback that is called before rendering. Can be used to implement custom visualizations. """ pass def _step_callback(self): """A custom callback that is called after stepping the simulation. Can be used to enforce additional constraints on the simulation state. """ pass