Exemple #1
0
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(
    Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

# ============ Multi-GPU ============
model = to_multi_gpu(model, n_gpus=2)
# ===================================
model.compile(loss=tf.keras.losses.categorical_crossentropy,
              optimizer=tf.keras.optimizers.Adadelta(),
              metrics=['accuracy'])

model.fit(x_train,
          y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Exemple #2
0
def run_experiment(x):
    """
    Runs a single experiment with the given learning rate and weight decay parameters
    """
    learning_rate = x[0]
    weight_decay = x[1]

    global log_path
    if args.optimize:
        global step
        step += 1  # pylint: disable=E0602
        log_path = os.path.join('log', args.dataset, args.ml_method, args.init,
                                str(args.labeled_ratio),
                                str(args.corruption_ratio), str(step))
        if not os.path.exists(log_path):
            os.makedirs(log_path)

    with open(os.path.join(log_path, 'his.txt'), 'a') as f:
        f.write('Learning rate: ' + str(x[0]) + '\n')
        f.write('Weight decay: ' + str(x[1]) + '\n')

    K.clear_session()
    model = resnet101(dh.no_classes[args.dataset],
                      initialization=args.init,
                      weight_decay=weight_decay)
    if params.n_gpus > 1:
        model = to_multi_gpu(model, n_gpus=params.n_gpus)

    sgd = SGD(lr=learning_rate, momentum=0.9, decay=0.0, nesterov=True)
    model.compile(loss=loss_function, optimizer=sgd, metrics=[loss_function])

    ind_lr_step = 0
    lowest_loss = np.inf
    while ind_lr_step < params.no_lr_steps:
        model_checkpoint = ModelCheckpoint(os.path.join(
            log_path,
            str(ind_lr_step) + '_cp.h5'),
                                           monitor='val_loss',
                                           save_best_only=True)
        early_stopper = EarlyStopping(monitor='val_loss',
                                      patience=params.lr_patience)
        loss_plotter = LossPlotter(
            os.path.join(log_path,
                         str(ind_lr_step) + '_losses.png'))

        his = model.fit_generator(
            generator=dh.generator('train_labeled', aug=True),
            steps_per_epoch=len(dh.inds_labeled) / params.batch_size,
            epochs=params.max_epoch,
            callbacks=[model_checkpoint, early_stopper, loss_plotter],
            validation_data=dh.generator('val', aug=False),
            validation_steps=len(dh.val_images) / params.batch_size / 10,
            verbose=2)
        with open(os.path.join(log_path,
                               str(ind_lr_step) + '_his.p'), 'wb') as f:
            pickle.dump(his.history, f, pickle.HIGHEST_PROTOCOL)
        with open(os.path.join(log_path, 'his.txt'), 'a') as f:
            f.write('Training history:\n')
            f.write(str(his.history) + '\n')

        if np.min(his.history['val_loss']) < lowest_loss:
            lowest_loss = np.min(his.history['val_loss'])
        else:
            model.load_weights(os.path.join(log_path,
                                            str(ind_lr_step - 1) + '_cp.h5'),
                               by_name=True)
            break

        model.load_weights(os.path.join(log_path,
                                        str(ind_lr_step) + '_cp.h5'),
                           by_name=True)
        learning_rate /= 10
        K.set_value(model.optimizer.lr, learning_rate)
        ind_lr_step += 1

    model.save_weights(os.path.join(log_path, 'best_cp.h5'))

    res_metrics = test_model(model)
    with open(os.path.join(log_path, 'metrics.p'), 'wb') as f:
        pickle.dump(res_metrics, f, pickle.HIGHEST_PROTOCOL)
    with open(os.path.join(log_path, 'metrics.txt'), 'w') as f:
        f.write(str(res_metrics) + '\n')

    return -res_metrics[
        'f1c_top3']  # negative because gp_minimize tries to minimize the result
Exemple #3
0
def run_experiment(x):
    """
    Runs a single experiment with the given learning rate and weight decay parameters
    """
    learning_rate = x[0]
    weight_decay = x[1]

    global log_path
    if args.optimize:
        global step
        step += 1  # pylint: disable=E0602
        log_path = os.path.join('log2', args.dataset, args.ml_method,
                                args.init, str(args.labeled_ratio),
                                str(args.corruption_ratio), str(step))
        if not os.path.exists(log_path):
            os.makedirs(log_path)

    with open(os.path.join(log_path, 'his.txt'), 'w') as f:
        f.write('Learning rate: ' + str(x[0]) + '\n')
        f.write('Weight decay: ' + str(x[1]) + '\n')

    K.clear_session()

    # load pretrained model for label propagation
    if args.ml_method == 'robust_warp':
        model_path = os.path.join('log', args.dataset, 'robust_warp_sup',
                                  args.init, str(args.labeled_ratio),
                                  str(args.corruption_ratio), 'best_cp.h5')
    else:
        model_path = os.path.join('log', args.dataset, args.ml_method,
                                  args.init, str(args.labeled_ratio),
                                  str(args.corruption_ratio), 'best_cp.h5')

    model_orig = resnet101(dh.no_classes[args.dataset],
                           initialization='random',
                           weight_decay=weight_decay)
    if params.n_gpus > 1:
        model_orig = to_multi_gpu(model_orig, n_gpus=params.n_gpus)
    model_orig.load_weights(model_path)

    update_mixed_labels(model_orig)

    model = resnet101(dh.no_classes[args.dataset] + 1,
                      initialization='random',
                      weight_decay=weight_decay)
    if params.n_gpus > 1:
        model_orig = to_single_gpu(model_orig)
    for ind_layer in range(len(model.layers)):
        if model.layers[ind_layer].name == model_orig.layers[ind_layer].name:
            model.layers[ind_layer].set_weights(
                model_orig.layers[ind_layer].get_weights())
    if params.n_gpus > 1:
        model = to_multi_gpu(model, n_gpus=params.n_gpus)

    sgd = SGD(lr=learning_rate, momentum=0.9, decay=0.0, nesterov=True)
    model.compile(loss=loss_function, optimizer=sgd, metrics=[loss_function])

    ind_lr_step = 0
    train_losses = []
    val_losses = []
    patience_losses = []
    for ind_epoch in range(params.max_epoch):
        if ind_epoch % 20 == 0 and not ind_epoch == 0:
            update_mixed_labels(model)

        his = model.fit_generator(
            generator=dh.generator('train_mixed', aug=True),
            steps_per_epoch=dh.mixed_labels.shape[0] / params.batch_size,
            validation_data=dh.generator('val', aug=False),
            validation_steps=len(dh.val_images) / params.batch_size / 10,
            verbose=2)

        train_losses.append(his.history['loss'][0])
        val_losses.append(his.history['val_loss'][0])
        patience_losses.append(his.history['val_loss'][0])

        if min(patience_losses) == patience_losses[-1]:
            model.save_weights(
                os.path.join(log_path,
                             str(ind_lr_step) + '_cp.h5'))
        elif np.argmin(np.array(patience_losses)
                       ) < len(patience_losses) - 1 - params.lr_patience:
            with open(os.path.join(log_path, 'his.txt'), 'a') as f:
                f.write('loss: ' + str(train_losses) + '\n')
                f.write('val_loss: ' + str(val_losses) + '\n')
            if ind_lr_step == params.no_lr_steps - 1:
                model.load_weights(os.path.join(log_path,
                                                str(ind_lr_step) + '_cp.h5'),
                                   by_name=True)
                break
            else:
                model.load_weights(os.path.join(log_path,
                                                str(ind_lr_step) + '_cp.h5'),
                                   by_name=True)
                learning_rate /= 10
                K.set_value(model.optimizer.lr, learning_rate)
                ind_lr_step += 1
                model.save_weights(
                    os.path.join(log_path,
                                 str(ind_lr_step) + '_cp.h5'))
                train_losses = []
                val_losses = []

    model.save_weights(os.path.join(log_path, 'best_cp.h5'))

    res_metrics = test_model(model)
    with open(os.path.join(log_path, 'metrics.p'), 'wb') as f:
        pickle.dump(res_metrics, f, pickle.HIGHEST_PROTOCOL)
    with open(os.path.join(log_path, 'metrics.txt'), 'w') as f:
        f.write(str(res_metrics) + '\n')

    return -res_metrics[
        'f1c_top3']  # negative because gp_minimize tries to minimize the result
Exemple #4
0
def update_mixed_labels(model):
    """
    Propagates labels to unlabeled examples using the features extracted with the model
    """
    if params.n_gpus > 1:
        feat_model = to_single_gpu(model)
    feat_model = keras.Model(feat_model.layers[0].input,
                             feat_model.layers[-2].output)  # pylint: disable=E1101
    if params.n_gpus > 1:
        feat_model = to_multi_gpu(feat_model, n_gpus=params.n_gpus)

    no_batches = int(np.ceil(float(len(dh.inds_labeled)) / params.batch_size))
    l_feats = feat_model.predict_generator(
        dh.generator('train_labeled_sorted', aug=False, shuffle_batches=False),
        no_batches)
    l_feats = np.concatenate(
        (l_feats[:(no_batches - 1) * params.batch_size],
         l_feats[-(len(dh.inds_labeled) -
                   (no_batches - 1) * params.batch_size):]))

    no_batches = int(np.ceil(
        float(len(dh.inds_unlabeled)) / params.batch_size))
    ul_feats = feat_model.predict_generator(
        dh.generator('train_unlabeled', aug=False, shuffle_batches=False),
        no_batches)
    ul_feats = np.concatenate(
        (ul_feats[:(no_batches - 1) * params.batch_size],
         ul_feats[-(len(dh.inds_unlabeled) -
                    (no_batches - 1) * params.batch_size):]))

    min_dists = np.zeros(ul_feats.shape[0], dtype=np.float32)
    min_dist_inds = np.zeros(ul_feats.shape[0], dtype=np.int)

    for ind_unlabeled in range(ul_feats.shape[0]):
        min_dists[ind_unlabeled] = np.Inf
        for ind_labeled in range(l_feats.shape[0]):
            dist = np.linalg.norm(l_feats[ind_labeled] -
                                  ul_feats[ind_unlabeled])
            if dist < min_dists[ind_unlabeled]:
                min_dists[ind_unlabeled] = dist
                min_dist_inds[ind_unlabeled] = ind_labeled

    no_labeled = l_feats.shape[0]
    no_unlabeled = ul_feats.shape[0]
    no_mixed = no_labeled + no_unlabeled
    mean_dist = np.mean(min_dists) * (float(no_unlabeled) / no_mixed)
    similarity_scores = np.exp(-min_dists / mean_dist)

    mixed_labels = np.zeros((no_mixed, dh.no_classes[dh.dataset] + 1),
                            dtype=np.float32)

    mixed_labels[dh.inds_labeled_sorted, :-1] = dh.train_labels[
        dh.inds_labeled_sorted]
    mixed_labels[dh.inds_labeled_sorted, -1] = 5

    for ind_unlabeled in range(no_unlabeled):
        mixed_labels[dh.inds_unlabeled[ind_unlabeled], :-1] = dh.train_labels[
            dh.inds_labeled_sorted[min_dist_inds[ind_unlabeled]]]
        mixed_labels[dh.inds_unlabeled[ind_unlabeled],
                     -1] = similarity_scores[ind_unlabeled]

    dh.mixed_labels = mixed_labels
    """for ind in range(no_mixed):
Exemple #5
0
if args.load_weights:
    model.load_weights(args.load_weights, by_name=True)

model.summary()

if args.suffix is None:
    suffix = "__rgb"
    if args.use_background:
        suffix += "X"
    if args.use_coarse:
        suffix += "CO"
else:
    suffix = "__" + args.suffix

if args.gpus != 1:
    model = to_multi_gpu(model, n_gpus=args.gpus)

if args.test:
    model_basename = args.load_model.split('/')[-1]
    mkdir_p('test_' + model_basename)
    test_model(model,
               ids,
               X,
               CO,
               patches_per_image=args.test_patches_per_image,
               batch_size=args.batch_size,
               csv_filename=model_basename + '.csv',
               save_pngs_to_folder='test_' + model_basename,
               input_channels=input_channels)

else: