Exemple #1
0
def main():
    # load heatmaps .etc
    rpsm_db = generate_data_for_rpsm()

    # load pairwise constraints
    pairwise_file = os.path.join(config.DATASET.ROOT, 'testdata',
                                 'pairwise_b16.pkl')
    with open(pairwise_file, 'rb') as f:
        pairwise = pickle.load(f)
        pairwise = pairwise['pairwise_constrain']

    all_cameras, all_hms, all_boxes, all_grid_centers, all_limb_lengths, all_gts = load_rpsm_testdata_all(
        rpsm_db)

    res = []
    for idx, (cameras, hms, boxes, grid_center, limb_length, gt) in enumerate(
            zip(all_cameras, all_hms, all_boxes, all_grid_centers,
                all_limb_lengths, all_gts)):

        pose = rpsm(cameras, hms, boxes, grid_center, limb_length, pairwise,
                    config)
        # print('GroundTruth Pose: ', gt)
        # print('Recovered Pose by RPSM: ', pose)
        mpjpe = np.mean(np.sqrt(np.sum((pose - gt)**2, axis=1)))
        # print('MPJPE: ', mpjpe)
        res.append(mpjpe)
        if idx % 500 == 0:
            print('%d:%.2f' % (idx, mpjpe))
    print('MPJPE: ', np.mean(res))
Exemple #2
0
def main():
    args = parse_args()
    logger, final_output_dir, tb_log_dir = create_logger(
        config, args.cfg, 'test3d')

    prediction_path = os.path.join(final_output_dir,
                                   config.TEST.HEATMAP_LOCATION_FILE)
    test_dataset = eval('dataset.' + config.DATASET.TEST_DATASET)(
        config, config.DATASET.TEST_SUBSET, False)

    all_heatmaps = h5py.File(prediction_path)['heatmaps']

    pairwise_file = config.PICT_STRUCT.PAIRWISE_FILE
    with open(pairwise_file, 'rb') as f:
        pairwise = pickle.load(f)['pairwise_constrain']

    cnt = 0
    grouping = test_dataset.grouping
    mpjpes = []
    for items in grouping:
        heatmaps = []
        boxes = []
        poses = []
        cameras = []

        for idx in items:
            datum = test_dataset.db[idx]
            camera = datum['camera']
            cameras.append(camera)

            poses.append(
                camera_to_world_frame(datum['joints_3d'], camera['R'],
                                      camera['T']))

            box = {}
            box['scale'] = np.array(datum['scale'])
            box['center'] = np.array(datum['center'])
            boxes.append(box)

            heatmaps.append(all_heatmaps[cnt])
            cnt += 1
        heatmaps = np.array(heatmaps)

        # This demo uses GT root locations and limb length; but can be replaced by statistics
        grid_center = poses[0][0]
        body = HumanBody()
        limb_length = compute_limb_length(body, poses[0])
        prediction = rpsm(cameras, heatmaps, boxes, grid_center, limb_length,
                          pairwise, config)
        mpjpe = np.mean(np.sqrt(np.sum((prediction - poses[0])**2, axis=1)))
        mpjpes.append(mpjpe)
    print(np.mean(mpjpes))
def main():
    parse_args()
    test_data_file = 'data/testdata/rpsm_testdata_b16.pkl'
    pairwise_file = 'data/testdata/pairwise_b16.pkl'
    with open(pairwise_file, 'rb') as f:
        pairwise = pickle.load(f)
        pairwise = pairwise['pairwise_constrain']
    all_cameras, all_hms, all_boxes, all_grid_centers, all_limb_lengths, all_gts = load_rpsm_testdata_all(
        test_data_file)

    res = []
    for idx, (cameras, hms, boxes, grid_center, limb_length, gt) in enumerate(zip(all_cameras,
        all_hms, all_boxes, all_grid_centers,all_limb_lengths, all_gts)):

        pose = rpsm(cameras, hms, boxes, grid_center, limb_length, pairwise, config)
        # print('GroundTruth Pose: ', gt)
        # print('Recovered Pose by RPSM: ', pose)
        mpjpe = np.mean(np.sqrt(np.sum((pose - gt)**2, axis=1)))
        # print('MPJPE: ', mpjpe)
        res.append(mpjpe)
        if idx % 500 == 0:
            print('%d:%.2f' % (idx, mpjpe))
    print('MPJPE: ', np.mean(res))