def compute_features_from_aes_for_test_set(): test_x, ids = TestSetLoader.load('../data') config = load_configuration('../config/caes.json') scaes = StackedAutoencoders(config, warm_start=True) test_x = scaes.get_features(test_x) np.save('../data/test_x.npy', test_x) np.save('../data/test_ids.npy', ids)
def predict_with_mlp(): model = Sequential() model.add(Dense(33, 64)) model.add(Activation('sigmoid')) # model.add(Dropout(0.2)) model.add(Dense(64, 128)) model.add(Activation('sigmoid')) # model.add(Dropout(0.2)) model.add(Dense(128, 128)) model.add(Dense(128, 1, init='glorot_uniform')) model.add(Activation('linear')) model.load_weights('../data/mlp_params.hdf5') # sgd = SGD(lr=1.e-5, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='mean_squared_error', optimizer='rmsprop') with open('../data/parameters.pkl', 'rb') as f: max_val, min_val = pickle.load(f) test_x, ids = TestSetLoader.load('../data') test_x = (test_x - min_val) / (max_val - min_val) predicted = model.predict(test_x) generate_submission(ids, predicted, '../data/submission.csv')