Exemple #1
0
def test_pytorch_approximator():
    np.random.seed(1)
    torch.manual_seed(1)

    n_actions = 2
    s = np.random.rand(1000, 4)
    a = np.random.randint(n_actions, size=(1000, 1))
    q = np.random.rand(1000)

    approximator = Regressor(TorchApproximator, input_shape=(4,),
                             output_shape=(2,), n_actions=n_actions,
                             network=ExampleNet,
                             optimizer={'class': optim.Adam,
                                        'params': {}}, loss=F.mse_loss,
                             batch_size=100, quiet=True)

    approximator.fit(s, a, q, n_epochs=20)

    x_s = np.random.rand(2, 4)
    x_a = np.random.randint(n_actions, size=(2, 1))
    y = approximator.predict(x_s, x_a)
    y_test = np.array([0.37191153, 0.5920861])

    assert np.allclose(y, y_test)

    y = approximator.predict(x_s)
    y_test = np.array([[0.47908658, 0.37191153],
                       [0.5920861, 0.27575058]])

    assert np.allclose(y, y_test)

    gradient = approximator.diff(x_s[0], x_a[0])
    gradient_test = np.array([0., 0., 0., 0., 0.02627479, 0.76513696,
                              0.6672573, 0.35979462, 0., 1.])
    assert np.allclose(gradient, gradient_test)

    gradient = approximator.diff(x_s[0])
    gradient_test = np.array([[0.02627479, 0.], [0.76513696, 0.],
                              [0.6672573, 0.], [0.35979462, 0.],
                              [0., 0.02627479], [0., 0.76513696],
                              [0., 0.6672573], [0., 0.35979462], [1, 0.],
                              [0., 1.]])
    assert np.allclose(gradient, gradient_test)

    old_weights = approximator.get_weights()
    approximator.set_weights(old_weights)
    new_weights = approximator.get_weights()

    assert np.array_equal(new_weights, old_weights)

    random_weights = np.random.randn(*old_weights.shape).astype(np.float32)
    approximator.set_weights(random_weights)
    random_weight_new = approximator.get_weights()

    assert np.array_equal(random_weights, random_weight_new)
    assert not np.any(np.equal(random_weights, old_weights))
Exemple #2
0
def test_deterministic_policy():
    np.random.seed(88)

    n_dims = 5

    approximator = Regressor(LinearApproximator,
                             input_shape=(n_dims,),
                             output_shape=(2,))

    pi = DeterministicPolicy(approximator)

    w_new = np.random.rand(pi.weights_size)

    w_old = pi.get_weights()
    pi.set_weights(w_new)

    assert np.array_equal(w_new, approximator.get_weights())
    assert not np.array_equal(w_old, w_new)
    assert np.array_equal(w_new, pi.get_weights())

    s_test_1 = np.random.randn(5)
    s_test_2 = np.random.randn(5)
    a_test = approximator.predict(s_test_1)

    assert pi.get_regressor() == approximator

    assert pi(s_test_1, a_test) == 1
    assert pi(s_test_2, a_test) == 0

    a_stored = np.array([-1.86941072, -0.1789696])
    assert np.allclose(pi.draw_action(s_test_1), a_stored)
Exemple #3
0
class AveragedDQN(AbstractDQN):
    """
    Averaged-DQN algorithm.
    "Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement
    Learning". Anschel O. et al.. 2017.

    """
    def __init__(self, mdp_info, policy, approximator, n_approximators,
                 **params):
        """
        Constructor.

        Args:
            n_approximators (int): the number of target approximators to store.

        """
        assert n_approximators > 1

        self._n_approximators = n_approximators

        super().__init__(mdp_info, policy, approximator, **params)

        self._n_fitted_target_models = 1

        self._add_save_attr(_n_fitted_target_models='primitive')

    def _initialize_regressors(self, approximator, apprx_params_train,
                               apprx_params_target):
        self.approximator = Regressor(approximator, **apprx_params_train)
        self.target_approximator = Regressor(approximator,
                                             n_models=self._n_approximators,
                                             **apprx_params_target)
        for i in range(len(self.target_approximator)):
            self.target_approximator[i].set_weights(
                self.approximator.get_weights()
            )

    def _update_target(self):
        idx = self._n_updates // self._target_update_frequency\
              % self._n_approximators
        self.target_approximator[idx].set_weights(
            self.approximator.get_weights())

        if self._n_fitted_target_models < self._n_approximators:
            self._n_fitted_target_models += 1

    def _next_q(self, next_state, absorbing):
        q = list()
        for idx in range(self._n_fitted_target_models):
            q.append(self.target_approximator.predict(next_state, idx=idx, **self._predict_params))
        q = np.mean(q, axis=0)
        if np.any(absorbing):
            q *= 1 - absorbing.reshape(-1, 1)

        return np.max(q, axis=1)
Exemple #4
0
def test_linear_approximator():
    np.random.seed(1)

    # Generic regressor
    a = np.random.rand(1000, 3)

    k = np.random.rand(3, 2)
    b = a.dot(k) + np.random.randn(1000, 2)

    approximator = Regressor(LinearApproximator,
                             input_shape=(3, ),
                             output_shape=(2, ))

    approximator.fit(a, b)

    x = np.random.rand(2, 3)
    y = approximator.predict(x)
    y_test = np.array([[0.57638247, 0.1573216], [0.11388247, 0.24123678]])

    assert np.allclose(y, y_test)

    point = np.random.randn(3, )
    derivative = approximator.diff(point)

    lp = len(point)
    for i in range(derivative.shape[1]):
        assert (derivative[i * lp:(i + 1) * lp, i] == point).all()

    old_weights = approximator.get_weights()
    approximator.set_weights(old_weights)
    new_weights = approximator.get_weights()

    assert np.array_equal(new_weights, old_weights)

    random_weights = np.random.randn(*old_weights.shape).astype(np.float32)
    approximator.set_weights(random_weights)
    random_weight_new = approximator.get_weights()

    assert np.array_equal(random_weights, random_weight_new)
    assert not np.any(np.equal(random_weights, old_weights))

    # Action regressor + Ensemble
    n_actions = 2
    s = np.random.rand(1000, 3)
    a = np.random.randint(n_actions, size=(1000, 1))
    q = np.random.rand(1000)

    approximator = Regressor(LinearApproximator,
                             input_shape=(3, ),
                             n_actions=n_actions,
                             n_models=5)

    approximator.fit(s, a, q)

    x_s = np.random.rand(2, 3)
    x_a = np.random.randint(n_actions, size=(2, 1))
    y = approximator.predict(x_s, x_a, prediction='mean')
    y_test = np.array([0.49225698, 0.69660881])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='sum')
    y_test = np.array([2.46128492, 3.48304404])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='min')
    y_test = np.array([[0.49225698, 0.69660881]])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s)
    y_test = np.array([[0.49225698, 0.44154141], [0.69660881, 0.69060195]])
    assert np.allclose(y, y_test)

    approximator = Regressor(LinearApproximator,
                             input_shape=(3, ),
                             n_actions=n_actions)

    approximator.fit(s, a, q)

    gradient = approximator.diff(x_s[0], x_a[0])
    gradient_test = np.array([0.88471362, 0.11666548, 0.45466254, 0., 0., 0.])

    assert np.allclose(gradient, gradient_test)
Exemple #5
0
class DQN(Agent):
    """
    Deep Q-Network algorithm.
    "Human-Level Control Through Deep Reinforcement Learning".
    Mnih V. et al.. 2015.

    """
    def __init__(self,
                 mdp_info,
                 policy,
                 approximator,
                 approximator_params,
                 batch_size,
                 target_update_frequency,
                 replay_memory=None,
                 initial_replay_size=500,
                 max_replay_size=5000,
                 fit_params=None,
                 n_approximators=1,
                 clip_reward=True):
        """
        Constructor.

        Args:
            approximator (object): the approximator to use to fit the
               Q-function;
            approximator_params (dict): parameters of the approximator to
                build;
            batch_size (int): the number of samples in a batch;
            target_update_frequency (int): the number of samples collected
                between each update of the target network;
            replay_memory ([ReplayMemory, PrioritizedReplayMemory], None): the
                object of the replay memory to use; if None, a default replay
                memory is created;
            initial_replay_size (int): the number of samples to collect before
                starting the learning;
            max_replay_size (int): the maximum number of samples in the replay
                memory;
            fit_params (dict, None): parameters of the fitting algorithm of the
                approximator;
            n_approximators (int, 1): the number of approximator to use in
                ``AveragedDQN``;
            clip_reward (bool, True): whether to clip the reward or not.

        """
        self._fit_params = dict() if fit_params is None else fit_params

        self._batch_size = batch_size
        self._n_approximators = n_approximators
        self._clip_reward = clip_reward
        self._target_update_frequency = target_update_frequency

        if replay_memory is not None:
            self._replay_memory = replay_memory
            if isinstance(replay_memory, PrioritizedReplayMemory):
                self._fit = self._fit_prioritized
            else:
                self._fit = self._fit_standard
        else:
            self._replay_memory = ReplayMemory(initial_replay_size,
                                               max_replay_size)
            self._fit = self._fit_standard

        self._n_updates = 0

        apprx_params_train = deepcopy(approximator_params)
        apprx_params_target = deepcopy(approximator_params)
        self.approximator = Regressor(approximator, **apprx_params_train)
        self.target_approximator = Regressor(approximator,
                                             n_models=self._n_approximators,
                                             **apprx_params_target)
        policy.set_q(self.approximator)

        if self._n_approximators == 1:
            self.target_approximator.set_weights(
                self.approximator.get_weights())
        else:
            for i in range(self._n_approximators):
                self.target_approximator[i].set_weights(
                    self.approximator.get_weights())

        self._add_save_attr(_fit_params='pickle',
                            _batch_size='primitive',
                            _n_approximators='primitive',
                            _clip_reward='primitive',
                            _target_update_frequency='primitive',
                            _replay_memory='mushroom',
                            _n_updates='primitive',
                            approximator='mushroom',
                            target_approximator='mushroom')

        super().__init__(mdp_info, policy)

    def fit(self, dataset):
        self._fit(dataset)

        self._n_updates += 1
        if self._n_updates % self._target_update_frequency == 0:
            self._update_target()

    def _fit_standard(self, dataset):
        self._replay_memory.add(dataset)
        if self._replay_memory.initialized:
            state, action, reward, next_state, absorbing, _ = \
                self._replay_memory.get(self._batch_size)

            if self._clip_reward:
                reward = np.clip(reward, -1, 1)

            q_next = self._next_q(next_state, absorbing)
            q = reward + self.mdp_info.gamma * q_next

            self.approximator.fit(state, action, q, **self._fit_params)

    def _fit_prioritized(self, dataset):
        self._replay_memory.add(
            dataset,
            np.ones(len(dataset)) * self._replay_memory.max_priority)
        if self._replay_memory.initialized:
            state, action, reward, next_state, absorbing, _, idxs, is_weight = \
                self._replay_memory.get(self._batch_size)

            if self._clip_reward:
                reward = np.clip(reward, -1, 1)

            q_next = self._next_q(next_state, absorbing)
            q = reward + self.mdp_info.gamma * q_next
            td_error = q - self.approximator.predict(state, action)

            self._replay_memory.update(td_error, idxs)

            self.approximator.fit(state,
                                  action,
                                  q,
                                  weights=is_weight,
                                  **self._fit_params)

    def _update_target(self):
        """
        Update the target network.

        """
        self.target_approximator.set_weights(self.approximator.get_weights())

    def _next_q(self, next_state, absorbing):
        """
        Args:
            next_state (np.ndarray): the states where next action has to be
                evaluated;
            absorbing (np.ndarray): the absorbing flag for the states in
                ``next_state``.

        Returns:
            Maximum action-value for each state in ``next_state``.

        """
        q = self.target_approximator.predict(next_state)
        if np.any(absorbing):
            q *= 1 - absorbing.reshape(-1, 1)

        return np.max(q, axis=1)

    def draw_action(self, state):
        action = super(DQN, self).draw_action(np.array(state))

        return action

    def _post_load(self):
        if isinstance(self._replay_memory, PrioritizedReplayMemory):
            self._fit = self._fit_prioritized
        else:
            self._fit = self._fit_standard

        self.policy.set_q(self.approximator)
Exemple #6
0
def test_cmac_approximator():
    np.random.seed(1)

    # Generic regressor
    x = np.random.rand(1000, 2)

    k1 = np.random.rand(2)
    k2 = np.random.rand(2)

    y = np.array(
        [np.sin(x.dot(k1) * 2 * np.pi),
         np.sin(x.dot(k2) * 2 * np.pi)]).T

    tilings = Tiles.generate(10, [10, 10], np.zeros(2), np.ones(2))
    approximator = Regressor(CMAC,
                             tilings=tilings,
                             input_shape=(2, ),
                             output_shape=(2, ))

    approximator.fit(x, y)

    x = np.random.rand(2, 2)
    y_hat = approximator.predict(x)
    y_true = np.array(
        [np.sin(x.dot(k1) * 2 * np.pi),
         np.sin(x.dot(k2) * 2 * np.pi)]).T

    y_test = np.array([[-0.73787754, 0.90673493], [-0.94972964, -0.72380013]])

    assert np.allclose(y_hat, y_test)

    point = np.random.rand(2)
    derivative = approximator.diff(point)

    assert np.array_equal(np.sum(derivative, axis=0), np.ones(2) * 10)
    assert len(derivative) == approximator.weights_size

    old_weights = approximator.get_weights()
    approximator.set_weights(old_weights)
    new_weights = approximator.get_weights()

    assert np.array_equal(new_weights, old_weights)

    random_weights = np.random.randn(*old_weights.shape).astype(np.float32)
    approximator.set_weights(random_weights)
    random_weight_new = approximator.get_weights()

    assert np.array_equal(random_weights, random_weight_new)
    assert not np.any(np.equal(random_weights, old_weights))

    # Action regressor + Ensemble
    n_actions = 2
    s = np.random.rand(1000, 3)
    a = np.random.randint(n_actions, size=(1000, 1))
    q = np.random.rand(1000)

    tilings = Tiles.generate(10, [10, 10, 10], np.zeros(3), np.ones(3))
    approximator = Regressor(CMAC,
                             tilings=tilings,
                             input_shape=(3, ),
                             n_actions=n_actions,
                             n_models=5)

    approximator.fit(s, a, q)

    x_s = np.random.rand(2, 3)
    x_a = np.random.randint(n_actions, size=(2, 1))
    y = approximator.predict(x_s, x_a, prediction='mean')
    y_test = np.array([[0.10921918, 0.09923379]])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='sum')
    y_test = np.array([0.54609592, 0.49616895])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='min')
    y_test = np.array([[0.10921918, 0.09923379]])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s)
    y_test = np.array([[0.07606651, 0.10921918], [0.40698114, 0.09923379]])
    assert np.allclose(y, y_test)
def test_cmac_approximator():
    np.random.seed(1)

    # Generic regressor
    x = np.random.rand(1000, 2)

    k1 = np.random.rand(2)
    k2 = np.random.rand(2)

    y = np.array(
        [np.sin(x.dot(k1) * 2 * np.pi),
         np.sin(x.dot(k2) * 2 * np.pi)]).T

    tilings = Tiles.generate(10, [10, 10], np.zeros(2), np.ones(2))
    approximator = Regressor(CMAC,
                             tilings=tilings,
                             input_shape=(2, ),
                             output_shape=(2, ))

    approximator.fit(x, y)

    x = np.random.rand(2, 2)
    y_hat = approximator.predict(x)
    y_true = np.array(
        [np.sin(x.dot(k1) * 2 * np.pi),
         np.sin(x.dot(k2) * 2 * np.pi)]).T

    y_test = np.array([[-0.73581504, 0.90877225], [-0.95854488, -0.72429239]])

    assert np.allclose(y_hat, y_test)

    point = np.random.rand(2)
    derivative = approximator.diff(point)

    assert np.array_equal(np.sum(derivative, axis=0), np.ones(2) * 10)
    assert len(derivative) == approximator.weights_size

    old_weights = approximator.get_weights()
    approximator.set_weights(old_weights)
    new_weights = approximator.get_weights()

    assert np.array_equal(new_weights, old_weights)

    random_weights = np.random.randn(*old_weights.shape).astype(np.float32)
    approximator.set_weights(random_weights)
    random_weight_new = approximator.get_weights()

    assert np.array_equal(random_weights, random_weight_new)
    assert not np.any(np.equal(random_weights, old_weights))

    # Action regressor + Ensemble
    n_actions = 2
    s = np.random.rand(1000, 3)
    a = np.random.randint(n_actions, size=(1000, 1))
    q = np.random.rand(1000)

    tilings = Tiles.generate(10, [10, 10, 10], np.zeros(3), np.ones(3))
    approximator = Regressor(CMAC,
                             tilings=tilings,
                             input_shape=(3, ),
                             n_actions=n_actions,
                             n_models=5)

    approximator.fit(s, a, q)
    np.random.seed(2)
    x_s = np.random.rand(2, 3)
    x_a = np.random.randint(n_actions, size=(2, 1))
    y = approximator.predict(x_s, x_a, prediction='mean')
    y_test = np.array([[0.56235045, 0.25080909]])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='sum')
    y_test = np.array([2.81175226, 1.25404543])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='min')
    y_test = np.array([0.56235045, 0.25080909])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s)
    y_test = np.array([[0.10367145, 0.56235045], [0.05575822, 0.25080909]])
    assert np.allclose(y, y_test)