Exemple #1
0
    def mstep(self, gamma, x, u, weights=None, use_prior=False):
        aux = []
        if weights:
            for _w, _gamma in zip(weights, gamma):
               aux.append(_w[:, None] * _gamma)
            gamma = aux

        xs, ys, ws = [], [], []
        for _x, _u, _w in zip(x, u, gamma):
            _feat = self.featurize(_x)
            xs.append(np.hstack((_feat, np.ones((_feat.shape[0], 1)))))
            ys.append(_u)
            ws.append(_w)

        _cov = np.zeros((self.nb_states, self.dm_act, self.dm_act))
        for k in range(self.nb_states):
            coef_, sigma = linear_regression(Xs=np.vstack(xs), ys=np.vstack(ys),
                                             weights=np.vstack(ws)[:, k], fit_intercept=False,
                                             **self.prior if use_prior else {})

            self.K[k, ...] = coef_[:, :self.dm_feat]
            self.kff[k, ...] = coef_[:, -1]
            _cov[k, ...] = sigma

        # usage = sum([_gamma.sum(0) for _gamma in gamma])
        # unused = np.where(usage < 1)[0]
        # used = np.where(usage > 1)[0]
        # if len(unused) > 0:
        #     for k in unused:
        #         i = npr.choice(used)
        #         self.K[k] = self.K[i] + 0.01 * npr.randn(*self.K[i].shape)
        #         self.kff[k] = self.kff[i] + 0.01 * npr.randn(*self.kff[i].shape)
        #         _cov[k] = _cov[i]

        self.cov = _cov
Exemple #2
0
    def initialize(self, x, u, **kwargs):
        localize = kwargs.get('localize', True)

        feat = [self.featurize(_x) for _x in x]
        Ts = [_x.shape[0] for _x in x]
        if localize:
            from sklearn.cluster import KMeans
            km = KMeans(self.nb_states)
            km.fit(np.hstack((np.vstack(feat), np.vstack(u))))
            zs = np.split(km.labels_, np.cumsum(Ts)[:-1])
        else:
            zs = [npr.choice(self.nb_states, size=T) for T in Ts]

        _cov = np.zeros((self.nb_states, self.dm_act, self.dm_act))
        for k in range(self.nb_states):
            ts = [np.where(z == k)[0] for z in zs]
            xs = [_feat[t, :] for t, _feat in zip(ts, feat)]
            ys = [_u[t, :] for t, _u in zip(ts, u)]

            coef_, intercept_, sigma = linear_regression(np.vstack(xs), np.vstack(ys),
                                                         weights=None, fit_intercept=True,
                                                         **self.prior)
            self.K[k, ...] = coef_[:, :self.dm_feat]
            self.kff[k, :] = intercept_
            _cov[k, ...] = sigma

        self.cov = _cov
    def initialize(self, x, u, **kwargs):
        localize = kwargs.get('localize', True)

        Ts = [_x.shape[0] for _x in x]
        if localize:
            from sklearn.cluster import KMeans
            km = KMeans(self.nb_states)
            km.fit(np.hstack((np.vstack(x), np.vstack(u))))
            zs = np.split(km.labels_, np.cumsum(Ts)[:-1])
            zs = [z[:-1] for z in zs]
        else:
            zs = [npr.choice(self.nb_states, size=T - 1) for T in Ts]

        _cov = np.zeros((self.nb_states, self.dm_obs, self.dm_obs))
        for k in range(self.nb_states):
            ts = [np.where(z == k)[0] for z in zs]
            xs = [
                np.hstack((_x[t, :], _u[t, :])) for t, _x, _u in zip(ts, x, u)
            ]
            ys = [_x[t + 1, :] for t, _x in zip(ts, x)]

            coef_, intercept_, sigma = linear_regression(np.vstack(xs),
                                                         np.vstack(ys),
                                                         weights=None,
                                                         fit_intercept=True,
                                                         **self.prior)
            self.A[k, ...] = coef_[:, :self.dm_obs]
            self.B[k, ...] = coef_[:, self.dm_obs:]
            self.c[k, :] = intercept_
            _cov[k, ...] = sigma

        self.cov = _cov