def transformType(self, cln, values, tpe): if tpe == "as_is": return values cd = coders.get_coder(tpe, values, self) self.coders[cln] = cd if isinstance(cd, coders.ImageCoder): self.imageCoders.append(cd) return cd
def test_binary_bool(self): a=np.array([True,False,True,False]) bc=coders.get_coder("binary",a, None) self.assertEqual(bc[0], 1, "should be zero") self.assertEqual(bc[1], 0, "should be one") v=bc._decode(np.array([0.6])) self.assertEqual(v, True, "should be one") v=bc._decode(np.array([0.2])) self.assertEqual(v, False, "should be zero") pass
def test_binary_str2(self): a=np.array(["","1","","1"]) bc=coders.get_coder("binary",a, None) self.assertEqual(bc[0], 0, "should be zero") self.assertEqual(bc[1], 1, "should be one") v=bc._decode(np.array([0.6])) self.assertEqual(v, "1", "should be one") v=bc._decode(np.array([0.2])) self.assertEqual(v, "", "should be zero") pass
def test_categorical_pd(self): a=np.array([math.nan,1,2,1]) bc=coders.get_coder("categorical_one_hot",a, None) self.assertEqual(bc[0][2], True, "should be zero") self.assertEqual(bc[0][1], False, "should be one") v=bc._decode(np.array([0.3,0.4,0.45])) self.assertEqual(math.isnan(v),True, "should be one") v=bc._decode(np.array([0.2,0.1,0.1])) self.assertEqual(v, 1, "should be zero") pass
def test_categorical_str2(self): a=np.array(["","b","c","b"]) bc=coders.get_coder("categorical_one_hot",a, None) self.assertEqual(bc[0][0], True, "should be zero") self.assertEqual(bc[0][1], False, "should be one") v=bc._decode(np.array([0.3,0.4,0.45])) self.assertEqual(v, "c", "should be one") v=bc._decode(np.array([0.2,0.1,0.1])) self.assertEqual(v, "", "should be zero") pass
def test_multiclass2(self): a=np.array(["1","","",""]) bc=coders.get_coder("multi_class",a, None) val=bc[0] self.assertEqual((val==np.array([True])).sum(), 1,"Fixing format") for i in range(len(a)): val=bc[i] r=bc._decode(val) self.assertEqual(r, a[i], "Decoding should work also") pass