Exemple #1
0
def test_not_2_views():
    with pytest.raises(ValueError):
        view1 = np.random.random((10, ))
        view2 = np.random.random((10, ))
        view3 = np.random.random((10, ))
        kmeans = MultiviewKMeans()
        kmeans.fit([view1, view2, view3])
Exemple #2
0
def test_n_init_not_positive_int():
    with pytest.raises(ValueError):
        kmeans = MultiviewKMeans(n_init=-1)
        kmeans.fit(data_small)
    with pytest.raises(ValueError):
        kmeans = MultiviewKMeans(n_init=0)
        kmeans.fit(data_small)
Exemple #3
0
def test_init_not_2_views(data_small):
    with pytest.raises(ValueError):
        view1 = np.random.random((2, 8))
        view2 = np.random.random((2, 9))
        view3 = np.random.random((2, 9))
        kmeans = MultiviewKMeans(init=[view1, view2])
        kmeans.fit(data_small)
Exemple #4
0
def test_max_iter_not_positive_int(data_small):
    with pytest.raises(ValueError):
        kmeans = MultiviewKMeans(max_iter=-1)
        kmeans.fit(data_small)

    with pytest.raises(ValueError):
        kmeans = MultiviewKMeans(max_iter=0)
        kmeans.fit(data_small)
Exemple #5
0
def test_predict_random_small(data_random):

    kmeans = MultiviewKMeans()
    input_data = [
        data_random['fit_data'][0][:2], data_random['fit_data'][1][:2]
    ]
    kmeans.fit(input_data)
    cluster_pred = kmeans.predict(data_random['test_data'])

    assert (data_random['n_test'] == cluster_pred.shape[0])

    for cl in cluster_pred:
        assert (cl >= 0 and cl < data_random['n_clusters'])
Exemple #6
0
def test_patience_not_nonnegative_int(data_small):
    with pytest.raises(ValueError):
        kmeans = MultiviewKMeans(patience=-1)
        kmeans.fit(data_small)
Exemple #7
0
def test_samples_not_2D_2():
    with pytest.raises(ValueError):
        view1 = np.random.random((10, ))
        view2 = np.random.random((10, ))
        kmeans = MultiviewKMeans()
        kmeans.fit([view1, view2])
Exemple #8
0
def test_samples_not_list():
    with pytest.raises(ValueError):
        view1 = 1
        view2 = 3
        kmeans = MultiviewKMeans()
        kmeans.fit([view1, view2])
Exemple #9
0
def test_random_state_not_convertible(data_small):
    with pytest.raises(ValueError):
        kmeans = MultiviewKMeans(random_state='ab')
        kmeans.fit(data_small)
Exemple #10
0
def test_tol_not_nonnegative_float(data_small):
    with pytest.raises(ValueError):
        kmeans = MultiviewKMeans(tol=-0.05)
        kmeans.fit(data_small)
Exemple #11
0
def test_init_samples_not_2D_2(data_small):
    with pytest.raises(ValueError):
        view1 = np.random.random((2, ))
        view2 = np.random.random((2, ))
        kmeans = MultiviewKMeans(init=[view1, view2])
        kmeans.fit(data_small)
Exemple #12
0
def test_init_samples_not_list(data_small):
    with pytest.raises(ValueError):
        view1 = 1
        view2 = 3
        kmeans = MultiviewKMeans(init=[view1, view2])
        kmeans.fit(data_small)
Exemple #13
0
def test_init_clusters_not_same(data_small):
    with pytest.raises(ValueError):
        view1 = np.random.random((2, 8))
        view2 = np.random.random((3, 9))
        kmeans = MultiviewKMeans(init=[view1, view2])
        kmeans.fit(data_small)
Exemple #14
0
def test_not_init1(data_small):
    with pytest.raises(ValueError):
        kmeans = MultiviewKMeans(init='Not_Init')
        kmeans.fit(data_small)
Exemple #15
0
def test_final_centroids_less_than_n_clusters():
    with pytest.raises(ConvergenceWarning):
        kmeans = MultiviewKMeans(n_clusters=3, random_state=RANDOM_SEED)
        view1 = np.random.random((2, 11))
        view2 = np.random.random((2, 10))
        kmeans.fit([view1, view2])