def __init__(self, regs, glmfit_kwargs=None, **kwargs): """ Parameters ---------- regs : list Names of sample attributes to be extracted from an input dataset and used as design matrix columns. glmfit_kwargs : dict, optional Keyword arguments to be passed to GeneralLinearModel.fit(). By default an AR1 model is used. """ GLMMapper.__init__(self, regs, **kwargs) if glmfit_kwargs is None: glmfit_kwargs = {} self.glmfit_kwargs = glmfit_kwargs
def __init__(self, regs, model_gen=None, results='params', **kwargs): """ Parameters ---------- regs : list Names of sample attributes to be extracted from an input dataset and used as design matrix columns. model_gen : callable, optional See UnivariateStatsModels documentation for details on the specification of the model fitting procedure. By default an OLS model is used. results : str or array, optional See UnivariateStatsModels documentation for details on the specification of model fit results. By default parameter estimates are returned. """ GLMMapper.__init__(self, regs, **kwargs) self.result_expr = results if model_gen is None: model_gen = lambda y, x: sm.OLS(y, x) self.model_gen = model_gen
def __init__(self, regs, model_gen=None, results="params", **kwargs): """ Parameters ---------- regs : list Names of sample attributes to be extracted from an input dataset and used as design matrix columns. model_gen : callable, optional See UnivariateStatsModels documentation for details on the specification of the model fitting procedure. By default an OLS model is used. results : str or array, optional See UnivariateStatsModels documentation for details on the specification of model fit results. By default parameter estimates are returned. """ GLMMapper.__init__(self, regs, **kwargs) self.result_expr = results if model_gen is None: model_gen = lambda y, x: sm.OLS(y, x) self.model_gen = model_gen