Exemple #1
0
    def test_simple_svd(self):
        pm = SVDMapper()
        # train SVD
        pm.train(self.ndlin)

        self.failUnlessEqual(pm.proj.shape, (20, 20))

        # now project data into PCA space
        p = pm.forward(self.ndlin)

        # only first eigenvalue significant
        self.failUnless(pm.sv[:1] > 1.0)
        self.failUnless((pm.sv[1:] < 0.0001).all())

        # only variance of first component significant
        var = p.var(axis=0)

       # test that only one component has variance
        self.failUnless(var[:1] > 1.0)
        self.failUnless((var[1:] < 0.0001).all())

        # check that the mapped data can be fully recovered by 'reverse()'
        pr = pm.reverse(p)

        self.failUnlessEqual(pr.shape, (40,20))
        self.failUnless(np.abs(pm.reverse(p) - self.ndlin).sum() < 0.0001)
Exemple #2
0
 def test_hpal_svd_combo(self):
     # get seed dataset
     ds4l = datasets['uni4large']
     ds_orig = ds4l[:, ds4l.a.nonbogus_features]
     # XXX Is this SVD mapping required?
     svm = SVDMapper()
     svm.train(ds_orig)
     ds_svs = svm.forward(ds_orig)
     ds_orig.samples = ds_svs.samples
     nf_true = ds_orig.nfeatures
     n = 4  # # of datasets to generate
     # Adding non-shared dimensions for each subject
     dss_rotated = [[]] * n
     for i in range(n):
         dss_rotated[i] = hstack(
             (ds_orig, ds4l[:, ds4l.a.bogus_features[i * 4:i * 4 + 4]]))
     # rotate data
     nf = dss_rotated[0].nfeatures
     dss_rotated = [
         random_affine_transformation(dss_rotated[i]) for i in xrange(n)
     ]
     # Test if it is close to doing hpal+SVD in sequence outside hpal
     # First, as we do in sequence outside hpal
     ha = Hyperalignment()
     mappers_orig = ha(dss_rotated)
     dss_back = [
         m.forward(ds_) for m, ds_ in zip(mappers_orig, dss_rotated)
     ]
     dss_mean = np.mean([sd.samples for sd in dss_back], axis=0)
     svm = SVDMapper()
     svm.train(dss_mean)
     dss_sv = [svm.forward(sd) for sd in dss_back]
     # Test for SVD dimensionality reduction even with 2 training subjects
     for output_dim in [1, 4]:
         ha = Hyperalignment(output_dim=output_dim)
         ha.train(dss_rotated[:2])
         mappers = ha(dss_rotated)
         dss_back = [m.forward(ds_) for m, ds_ in zip(mappers, dss_rotated)]
         for sd in dss_back:
             assert (sd.nfeatures == output_dim)
     # Check if combined hpal+SVD works as expected
     sv_corrs = []
     for sd1, sd2 in zip(dss_sv, dss_back):
         ndcs = np.diag(np.corrcoef(sd1.samples.T, sd2.samples.T)[nf:, :nf],
                        k=0)
         sv_corrs.append(ndcs)
     self.assertTrue(
         np.all(np.abs(np.array(sv_corrs)) >= 0.95),
         msg="Hyperalignment with dimensionality reduction should have "
         "reconstructed SVD dataset. Got correlations %s." % sv_corrs)
     # Check if it recovers original SVs
     sv_corrs_orig = []
     for sd in dss_back:
         ndcs = np.diag(np.corrcoef(sd.samples.T,
                                    ds_orig.samples.T)[nf_true:, :nf_true],
                        k=0)
         sv_corrs_orig.append(ndcs)
     self.assertTrue(np.all(np.abs(np.array(sv_corrs_orig)) >= 0.9),
                     msg="Expected original dimensions after "
                     "SVD. Got correlations %s." % sv_corrs_orig)
Exemple #3
0
    def test_simple_svd(self):
        pm = SVDMapper()
        # train SVD
        pm.train(self.ndlin)

        self.assertEqual(pm.proj.shape, (20, 20))

        # now project data into PCA space
        p = pm.forward(self.ndlin)

        # only first eigenvalue significant
        self.assertTrue(pm.sv[:1] > 1.0)
        self.assertTrue((pm.sv[1:] < 0.0001).all())

        # only variance of first component significant
        var = p.var(axis=0)

        # test that only one component has variance
        self.assertTrue(var[:1] > 1.0)
        self.assertTrue((var[1:] < 0.0001).all())

        # check that the mapped data can be fully recovered by 'reverse()'
        pr = pm.reverse(p)

        self.assertEqual(pr.shape, (40, 20))
        self.assertTrue(np.abs(pm.reverse(p) - self.ndlin).sum() < 0.0001)
    def _get_hypesvs(self, sl_connectomes, local_common_model=None):
        '''
        Hyperalign connectomes and return mapppers
        and trained SVDMapper of common space.

        Parameters
        ----------
        sl_connectomes: a list of connectomes to hyperalign
        local_common_model: a reference common model to be used.

        Returns
        -------
        a tuple (sl_hmappers, svm, local_common_model)
        sl_hmappers: a list of mappers corresponding to input list in that order.
        svm: a svm mapper based on the input data. if given a common model, this is None.
        local_common_model: If local_common_model is provided as input, this will be None.
            Otherwise, local_common_model will be computed here and returned.
        '''
        # TODO Should we z-score sl_connectomes?
        return_model = False if self.params.save_model is None else True
        if local_common_model is not None:
            ha = Hyperalignment(level2_niter=0)
            if not is_datasetlike(local_common_model):
                local_common_model = Dataset(samples=local_common_model)
            ha.train([local_common_model])
            sl_hmappers = ha(sl_connectomes)
            return sl_hmappers, None, None
        ha = Hyperalignment()
        sl_hmappers = ha(sl_connectomes)
        sl_connectomes = [
            slhm.forward(slc) for slhm, slc in zip(sl_hmappers, sl_connectomes)
        ]
        _ = [zscore(slc, chunks_attr=None) for slc in sl_connectomes]
        sl_connectomes = np.dstack(sl_connectomes).mean(axis=-1)
        svm = SVDMapper(force_train=True)
        svm.train(sl_connectomes)
        if return_model:
            local_common_model = svm.forward(sl_connectomes)
        else:
            local_common_model = None
        return sl_hmappers, svm, local_common_model
    def _get_hypesvs(self, sl_connectomes, local_common_model=None):
        '''
        Hyperalign connectomes and return mapppers
        and trained SVDMapper of common space.

        Parameters
        ----------
        sl_connectomes: a list of connectomes to hyperalign
        local_common_model: a reference common model to be used.

        Returns
        -------
        a tuple (sl_hmappers, svm, local_common_model)
        sl_hmappers: a list of mappers corresponding to input list in that order.
        svm: a svm mapper based on the input data. if given a common model, this is None.
        local_common_model: If local_common_model is provided as input, this will be None.
            Otherwise, local_common_model will be computed here and returned.
        '''
        # TODO Should we z-score sl_connectomes?
        return_model = False if self.params.save_model is None else True
        if local_common_model is not None:
            ha = Hyperalignment(level2_niter=0)
            if not is_datasetlike(local_common_model):
                local_common_model = Dataset(samples=local_common_model)
            ha.train([local_common_model])
            sl_hmappers = ha(sl_connectomes)
            return sl_hmappers, None, None
        ha = Hyperalignment()
        sl_hmappers = ha(sl_connectomes)
        sl_connectomes = [slhm.forward(slc) for slhm, slc in zip(sl_hmappers, sl_connectomes)]
        _ = [zscore(slc, chunks_attr=None) for slc in sl_connectomes]
        sl_connectomes = np.dstack(sl_connectomes).mean(axis=-1)
        svm = SVDMapper(force_train=True)
        svm.train(sl_connectomes)
        if return_model:
            local_common_model = svm.forward(sl_connectomes)
        else:
            local_common_model = None
        return sl_hmappers, svm, local_common_model
Exemple #6
0
    def test_more_svd(self):
        pm = SVDMapper()
        # train SVD
        pm.train(self.largefeat)

        # mixing matrix cannot be square
        self.failUnlessEqual(pm.proj.shape, (40, 10))

        # only first singular value significant
        self.failUnless(pm.sv[:1] > 10)
        self.failUnless((pm.sv[1:] < 10).all())

        # now project data into SVD space
        p = pm.forward(self.largefeat)

        # only variance of first component significant
        var = p.var(axis=0)

        # test that only one component has variance
        self.failUnless(var[:1] > 1.0)
        self.failUnless((var[1:] < 0.0001).all())

        # check that the mapped data can be fully recovered by 'reverse()'
        rp = pm.reverse(p)
        self.failUnlessEqual(rp.shape, self.largefeat.shape)
        self.failUnless((np.round(rp) == self.largefeat).all())

        # copy mapper
        pm2 = deepcopy(pm)

        # now make new random data and do forward->reverse check
        data = np.random.normal(size=(98,40))
        data_f = pm.forward(data)

        self.failUnlessEqual(data_f.shape, (98,10))

        data_r = pm.reverse(data_f)
        self.failUnlessEqual(data_r.shape, (98,40))
Exemple #7
0
    def test_more_svd(self):
        pm = SVDMapper()
        # train SVD
        pm.train(self.largefeat)

        # mixing matrix cannot be square
        self.assertEqual(pm.proj.shape, (40, 10))

        # only first singular value significant
        self.assertTrue(pm.sv[:1] > 10)
        self.assertTrue((pm.sv[1:] < 10).all())

        # now project data into SVD space
        p = pm.forward(self.largefeat)

        # only variance of first component significant
        var = p.var(axis=0)

        # test that only one component has variance
        self.assertTrue(var[:1] > 1.0)
        self.assertTrue((var[1:] < 0.0001).all())

        # check that the mapped data can be fully recovered by 'reverse()'
        rp = pm.reverse(p)
        self.assertEqual(rp.shape, self.largefeat.shape)
        self.assertTrue((np.round(rp) == self.largefeat).all())

        # copy mapper
        pm2 = deepcopy(pm)

        # now make new random data and do forward->reverse check
        data = np.random.normal(size=(98, 40))
        data_f = pm.forward(data)

        self.assertEqual(data_f.shape, (98, 10))

        data_r = pm.reverse(data_f)
        self.assertEqual(data_r.shape, (98, 40))
 def test_hpal_svd_combo(self):
     # get seed dataset
     ds4l = datasets['uni4large']
     ds_orig = ds4l[:, ds4l.a.nonbogus_features]
     # XXX Is this SVD mapping required?
     svm = SVDMapper()
     svm.train(ds_orig)
     ds_svs = svm.forward(ds_orig)
     ds_orig.samples = ds_svs.samples
     nf_true = ds_orig.nfeatures
     n = 4  # # of datasets to generate
     # Adding non-shared dimensions for each subject
     dss_rotated = [[]]*n
     for i in range(n):
         dss_rotated[i] = hstack(
             (ds_orig, ds4l[:, ds4l.a.bogus_features[i * 4: i * 4 + 4]]))
     # rotate data
     nf = dss_rotated[0].nfeatures
     dss_rotated = [random_affine_transformation(dss_rotated[i])
                    for i in xrange(n)]
     # Test if it is close to doing hpal+SVD in sequence outside hpal
     # First, as we do in sequence outside hpal
     ha = Hyperalignment()
     mappers_orig = ha(dss_rotated)
     dss_back = [m.forward(ds_)
                 for m, ds_ in zip(mappers_orig, dss_rotated)]
     dss_mean = np.mean([sd.samples for sd in dss_back], axis=0)
     svm = SVDMapper()
     svm.train(dss_mean)
     dss_sv = [svm.forward(sd) for sd in dss_back]
     # Test for SVD dimensionality reduction even with 2 training subjects
     for output_dim in [1, 4]:
         ha = Hyperalignment(output_dim=output_dim)
         ha.train(dss_rotated[:2])
         mappers = ha(dss_rotated)
         dss_back = [m.forward(ds_)
                     for m, ds_ in zip(mappers, dss_rotated)]
         for sd in dss_back:
             assert (sd.nfeatures == output_dim)
     # Check if combined hpal+SVD works as expected
     sv_corrs = []
     for sd1, sd2 in zip(dss_sv, dss_back):
         ndcs = np.diag(np.corrcoef(sd1.samples.T, sd2.samples.T)[nf:, :nf],
                        k=0)
         sv_corrs.append(ndcs)
     self.assertTrue(
         np.all(np.abs(np.array(sv_corrs)) >= 0.95),
         msg="Hyperalignment with dimensionality reduction should have "
             "reconstructed SVD dataset. Got correlations %s."
             % sv_corrs)
     # Check if it recovers original SVs
     sv_corrs_orig = []
     for sd in dss_back:
         ndcs = np.diag(
             np.corrcoef(sd.samples.T, ds_orig.samples.T)[nf_true:, :nf_true],
             k=0)
         sv_corrs_orig.append(ndcs)
     self.assertTrue(
         np.all(np.abs(np.array(sv_corrs_orig)) >= 0.9),
         msg="Expected original dimensions after "
             "SVD. Got correlations %s."
             % sv_corrs_orig)