Exemple #1
0
def read_qrnn(qrnn_file, test_file, inChannels, target):

    data = mwhsData(test_file, inChannels, target, ocean=False, test_data=True)

    qrnn = QRNN.load(qrnn_file)
    y_pre, y_prior, y0, y, y_pos_mean = S.predict(data, qrnn, \
                                                  add_noise = False)

    return y_pre, y_prior, y0, y, y_pos_mean
Exemple #2
0
        #%% read input data
                
        qrnn_path = os.path.expanduser("~/Dendrite/Projects/AWS-325GHz/MWHS/qrnn_output/all_with_flag/%s/"%(qrnn_dir))
        

        inChannels = np.concatenate([[target], channels])
 #       inChannels = np.array(channels)
        
        print(qrnn_dir, channels, inChannels)
            
        qrnn_file = os.path.join(qrnn_path, "qrnn_mwhs_%s.nc"%(target))
        
        print (qrnn_file)
        i183, = np.argwhere(inChannels == target)[0]
        
        data = mwhsData(test_file, 
                       inChannels, target, ocean = False, test_data = True)  
    
        qrnn = QRNN.load(qrnn_file)
        y_pre, y_prior, y0, y, y_pos_mean, x = predict(data, qrnn, \
                                                  add_noise = False)
        im = (np.abs(y_pre[:, 3] - y_prior[:, i183] )< 5) 
               
#        bia, std, ske, mae = S.calculate_statistics(y_prior, y0, y, y_pre[:, 3], im, i183)
        
        SI = np.abs(y_prior[:, 0] - y_prior[:, 1])
        
        im = SI < 5.0

        y_pre = y_prior[im, i183]
        y0    = y0[im]
        y     = y[im]