def test_prediction(self): np.random.seed(0) np.random.seed(0) X = np.random.rand(10, 3) Y = np.random.rand(10, 1) Z = np.random.rand(3, 3) qU_mean = np.random.rand(3, 1) qU_cov_W = np.random.rand(3, 3) qU_cov_diag = np.random.rand(3,) noise_var = np.random.rand(1) lengthscale = np.random.rand(3) variance = np.random.rand(1) qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:] Xt = np.random.rand(5, 3) m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) dtype = 'float64' m = Model() m.N = Variable() m.X = Variable(shape=(m.N, 3)) m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype)) m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype)) kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype) m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, 1), dtype=dtype) gp = m.Y.factor observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt) infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf) # noisy, diagonal mu_gpy, var_gpy = m_gpy.predict(Xt) infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf)
def test_gp_module_save_and_load(self): np.random.seed(0) X = np.random.rand(10, 3) Xt = np.random.rand(20, 3) Y = np.random.rand(10, 1) noise_var = np.random.rand(1) lengthscale = np.random.rand(3) variance = np.random.rand(1) dtype = 'float64' m = self.make_gpregr_model(lengthscale, variance, noise_var) observed = [m.X, m.Y] from mxfusion.inference import MAP, Inference infr = Inference(MAP(model=m, observed=observed), dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) infr.save(prefix=self.PREFIX) m2 = self.make_gpregr_model(lengthscale, variance, noise_var) observed2 = [m2.X, m2.Y] infr2 = Inference(MAP(model=m2, observed=observed2), dtype=dtype) infr2.initialize(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # Load previous parameters infr2.load( graphs_file=self.PREFIX + '_graphs.json', parameters_file=self.PREFIX + '_params.json', inference_configuration_file=self.PREFIX + '_configuration.json', mxnet_constants_file=self.PREFIX + '_mxnet_constants.json', variable_constants_file=self.PREFIX + '_variable_constants.json') for original_uuid, original_param in infr.params.param_dict.items(): original_data = original_param.data().asnumpy() reloaded_data = infr2.params.param_dict[ infr2._uuid_map[original_uuid]].data().asnumpy() assert np.all(np.isclose(original_data, reloaded_data)) for original_uuid, original_param in infr.params.constants.items(): if isinstance(original_param, mx.ndarray.ndarray.NDArray): original_data = original_param.asnumpy() reloaded_data = infr2.params.constants[ infr2._uuid_map[original_uuid]].asnumpy() else: original_data = original_param reloaded_data = infr2.params.constants[ infr2._uuid_map[original_uuid]] assert np.all(np.isclose(original_data, reloaded_data)) loss2, _ = infr2.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) self.remove_saved_files(self.PREFIX)
def test_sampling_prediction(self): D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \ qU_cov_W, qU_cov_diag, qU_chol = self.gen_data() Xt = np.random.rand(5, 3) m_gpy = GPy.core.SVGP( X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) dtype = 'float64' m, gp = self.gen_mxfusion_model(dtype, D, Z, noise_var, lengthscale, variance) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal infr_pred = TransferInference(ModulePredictionAlgorithm( model=m, observed=[m.X], target_variables=[m.Y], num_samples=5), infr_params=infr.params) gp = m.Y.factor gp.attach_prediction_algorithms( targets=gp.output_names, conditionals=gp.input_names, algorithm=SVGPRegressionSamplingPrediction(gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]), alg_name='svgp_predict') gp.svgp_predict.diagonal_variance = False gp.svgp_predict.noise_free = False gp.svgp_predict.jitter = 1e-6 y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
def test_sampling_prediction(self): np.random.seed(0) np.random.seed(0) X = np.random.rand(10, 3) Y = np.random.rand(10, 1) Z = np.random.rand(3, 3) qU_mean = np.random.rand(3, 1) qU_cov_W = np.random.rand(3, 3) qU_cov_diag = np.random.rand(3,) noise_var = np.random.rand(1) lengthscale = np.random.rand(3) variance = np.random.rand(1) qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:] Xt = np.random.rand(5, 3) m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) dtype = 'float64' m = Model() m.N = Variable() m.X = Variable(shape=(m.N, 3)) m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype)) m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype)) kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype) m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, 1), dtype=dtype) gp = m.Y.factor observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal infr_pred = TransferInference(ModulePredictionAlgorithm(model=m, observed=[m.X], target_variables=[m.Y], num_samples=5), infr_params=infr.params) gp = m.Y.factor gp.attach_prediction_algorithms( targets=gp.output_names, conditionals=gp.input_names, algorithm=SVGPRegressionSamplingPrediction( gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]), alg_name='svgp_predict') gp.svgp_predict.diagonal_variance = False gp.svgp_predict.jitter = 1e-6 y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
def test_prediction_w_mean(self): D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \ qU_cov_W, qU_cov_diag, qU_chol = self.gen_data() Xt = np.random.rand(5, 3) dtype = 'float64' m, gp, net = self.gen_mxfusion_model_w_mean(dtype, D, Z, noise_var, lengthscale, variance) mean = net(mx.nd.array(X, dtype=dtype)).asnumpy() mean_t = net(mx.nd.array(Xt, dtype=dtype)).asnumpy() m_gpy = GPy.core.SVGP( X=X, Y=Y - mean, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt) mu_gpy += mean_t infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf, rtol=1e-04, atol=1e-05), (mu_gpy, mu_mf) assert np.allclose(var_gpy, var_mf, rtol=1e-04, atol=1e-05), (var_gpy, var_mf)
def test_log_pdf_w_samples_of_noise_var(self): D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \ qU_cov_W, qU_cov_diag, qU_chol = self.gen_data() dtype = 'float64' D = 2 Y = np.random.rand(10, D) qU_mean = np.random.rand(3, D) m = Model() m.N = Variable() m.X = Variable(shape=(m.N, 3)) m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype)) m.noise_var = Variable(transformation=PositiveTransformation(), shape=(m.N, D)) kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype) m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, D), dtype=dtype) gp = m.Y.factor m.Y.factor.svgp_log_pdf.jitter = 1e-8 observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype), max_iter=1)
def test_log_pdf(self): np.random.seed(0) D = 2 X = np.random.rand(10, 3) Y = np.random.rand(10, D) Z = np.random.rand(3, 3) qU_mean = np.random.rand(3, D) qU_cov_W = np.random.rand(3, 3) qU_cov_diag = np.random.rand(3,) noise_var = np.random.rand(1) lengthscale = np.random.rand(3) variance = np.random.rand(1) qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:] m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) l_gpy = m_gpy.log_likelihood() dtype = 'float64' m = Model() m.N = Variable() m.X = Variable(shape=(m.N, 3)) m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype)) m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype)) kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype) m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, D), dtype=dtype) gp = m.Y.factor observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) l_mf = -loss assert np.allclose(l_mf.asnumpy(), l_gpy)
def test_log_pdf_w_mean(self): D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \ qU_cov_W, qU_cov_diag, qU_chol = self.gen_data() dtype = 'float64' m, gp, net = self.gen_mxfusion_model_w_mean(dtype, D, Z, noise_var, lengthscale, variance) mean = net(mx.nd.array(X, dtype=dtype)).asnumpy() m_gpy = GPy.core.SVGP( X=X, Y=Y - mean, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) l_gpy = m_gpy.log_likelihood() observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) l_mf = -loss assert np.allclose(l_mf.asnumpy(), l_gpy)
def test_prediction(self): D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \ qU_cov_W, qU_cov_diag, qU_chol = self.gen_data() Xt = np.random.rand(5, 3) m_gpy = GPy.core.SVGP( X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) dtype = 'float64' m, gp = self.gen_mxfusion_model(dtype, D, Z, noise_var, lengthscale, variance) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, 0], var_mf), (var_gpy[:, 0], var_mf) # noisy, diagonal mu_gpy, var_gpy = m_gpy.predict(Xt) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, 0], var_mf), (var_gpy[:, 0], var_mf) # TODO: The full covariance matrix prediction with SVGP in GPy may not be correct. Need further investigation. # noise_free, full_cov mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt, full_cov=True) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.svgp_predict.diagonal_variance = False infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = True res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] print(var_gpy.shape, var_mf.shape) assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, :, 0], var_mf), (var_gpy[:, :, 0], var_mf) # noisy, full_cov mu_gpy, var_gpy = m_gpy.predict(Xt, full_cov=True) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.svgp_predict.diagonal_variance = False infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, :, 0], var_mf), (var_gpy[:, :, 0], var_mf)