Exemple #1
0
    def update(self, index, weight, grad, state):
        assert (isinstance(weight, NDArray))
        assert (isinstance(grad, NDArray))
        self._update_count(index)
        lr = self._get_lr(index)
        wd = self._get_wd(index)
        t = self._index_update_count[index]

        with bulk(self._bulk):
            # preprocess grad
            grad *= self.rescale_grad
            if self.clip_gradient is not None:
                grad = clip(grad, -self.clip_gradient, self.clip_gradient)

            mean, var = state
            mean *= self.beta1
            mean += (1. - self.beta1) * grad
            var *= self.beta2
            var += (1. - self.beta2) * square(grad)

            r1 = weight.norm()
            if not self.bias_correction:
                r1 = minimum(maximum(r1, self.lower_bound), self.upper_bound)
                sqrt_var = sqrt(var)
                sqrt_var += self.epsilon
                g = mean / sqrt_var
                g += wd * weight
            else:
                # apply bias correction
                mean_hat = mean / (1. - power(self.beta1, t))
                var_hat = var / (1. - power(self.beta2, t))
                if self._eps_after_sqrt:
                    sqrt(var_hat, out=var_hat)
                    var_hat += self.epsilon
                else:
                    var_hat += self.epsilon
                    sqrt(var_hat, out=var_hat)
                mean_hat /= var_hat
                mean_hat += wd * weight
                g = mean_hat

            r2 = g.norm()

            # calculate lamb_trust_ratio
            ratio = r1 / r2
            # becomes NaN if ratio == NaN or 0, otherwise 0
            nan_or_zero = 1 - ratio / ratio
            r = where(nan_or_zero, ones_like(ratio), ratio)
            lr *= r

            # update weight
            g *= lr
            weight[:] -= g
Exemple #2
0
 def __getitem__(self, index):
     img_path, gt_path = self.img_paths[index], self.gt_paths[index]
     in_exposure = float(img_path.split('/')[-1][9:-5])
     gt_exposure = float(gt_path.split('/')[-1][9:-5])
     ratio = min(gt_exposure / in_exposure, 300)
     img = process_img(os.path.join(self.dataset_dir, img_path),
                       self.dataset)
     img = img[np.newaxis, :] * ratio
     gt = process_gt(os.path.join(self.dataset_dir, gt_path))
     gt = gt[np.newaxis, :]
     if self.transform is not None:
         img, gt = self.transform(img, gt)
     img = F.minimum(img, 1.0)
     return img, gt
Exemple #3
0
    def update(self, index, weight, grad, state):
        assert(isinstance(weight, NDArray))
        assert(isinstance(grad, NDArray))
        self._update_count(index)
        lr = self._get_lr(index)
        wd = self._get_wd(index)
        t = self._index_update_count[index]

        # preprocess grad
        grad *= self.rescale_grad
        if self.clip_gradient is not None:
            grad = clip(grad, -self.clip_gradient, self.clip_gradient)

        mean, var = state
        mean[:] = self.beta1 * mean + (1. - self.beta1) * grad
        var[:] = self.beta2 * var + (1. - self.beta2) * square(grad)

        r1 = weight.norm()
        if not self.bias_correction:
            r1 = minimum(maximum(r1, self.lower_bound), self.upper_bound)
            g = mean / (sqrt(var) + self.epsilon) + wd * weight

        else:
            # execution bias correction
            mean_hat = mean / (1. - power(self.beta1, t))
            var_hat = var / (1. - power(self.beta2, t))
            g = mean_hat / sqrt(var_hat + self.epsilon) + wd * weight

        r2 = g.norm()

        # calculate lamb_trust_ratio
        r = 1. if r1 == 0. or r2 == 0. else r1 / r2
        lr *= r

        # update weight
        weight[:] -= lr * g
Exemple #4
0
def GD(classifier,
       alpha,
       beta,
       gamma,
       max_iterations=100,
       learning_rate=50.0,
       learning_rate_decay=0.9,
       momentum=0.5):
    # Random initialization
    X = nd.abs(nd.random_normal(scale=1, shape=(1, *classifier.input_shape)))
    #audio_path_label_pairs = load_audio_path_label_pairs()
    #shuffle(audio_path_label_pairs)
    #audio_path, actual_label_id = audio_path_label_pairs[0]
    #mg = classifier.compute_melgram(audio_path)
    #X = nd.array(np.expand_dims(mg, axis=0), ctx=classifier.model_ctx)
    X = X.as_in_context(classifier.model_ctx)

    # GD with momentum
    eta = -1.0 * learning_rate
    prev_grad = nd.zeros(shape=X.shape)
    losses = []
    cls_losses = []
    sty_losses = []
    pct_losses = []
    l1s = []
    for t in range(max_iterations):
        # Projection
        X = nd.maximum(X, 0.0)
        X = nd.minimum(X, 1.0)

        # Save as .csv
        img = X[0, 0, :, :].asnumpy()
        np.savetxt('./temp/iter%d.csv' % t, img)

        # Calculate losses and gradients
        cls_loss = classifier_loss(X, classifier)
        sty_loss = style_loss(X)
        pct_loss = perceptual_loss(X)
        l1 = l1_regularization(X)

        # Weighting
        loss = cls_loss[
            0] + alpha * sty_loss[0] + beta * pct_loss[0] + gamma * l1[0]
        grad = cls_loss[
            1] + alpha * sty_loss[1] + beta * pct_loss[1] + gamma * l1[1]

        # Store losses
        print("Iteration %d: %.2f | (%.2f, %.2f, %.2f, %.2f)" %
              (t, loss, cls_loss[0], sty_loss[0], pct_loss[0], l1[0]))
        #print("Iteration %d: %.2f | (%.2f, %.2f, %.2f)" % (t, loss, cls_loss[0], sty_loss[0], pct_loss[0]))
        losses.append(loss)
        cls_losses.append(cls_loss[0])
        sty_losses.append(sty_loss[0])
        pct_losses.append(pct_loss[0])
        l1s.append(l1[0])

        # Update
        X = X - eta * (nd.array(grad) + momentum * prev_grad)

        eta = eta * learning_rate_decay
        prev_grad = grad